
Master thesis

An efficient real-time capable multi-core
module framework for the humanoid robot

NAO

Aaron Larisch
aaron.larisch@tu-dortmund.de

July 13, 2020

Reviewers:
Prof. Dr. Uwe Schwiegelshohn
Prof. Dr. Jian-Jia Chen
Supervisor:
Dipl.-Inf. Ingmar Schwarz

Institut für Roboterforschung
Abteilung Informationstechnik

Fakultät für Informatik
Lehrstuhl für Eingebettete Systeme

Contents

1 Introduction 1
1.1 About RoboCup . 1
1.2 About the NAO . 2
1.3 Motivation . 3
1.4 Structure . 4

2 Prerequisites 5
2.1 Framework . 5
2.2 Real-time . 5

3 Analysis 9
3.1 Current Situation . 9
3.2 Possible improvements . 15
3.3 Requirements . 17

4 Framework and library research 19
4.1 Approaches for robotics . 19

4.1.1 B-Human framework . 19
4.1.2 ROS . 20

4.2 General approaches . 21
4.2.1 OpenMP . 22
4.2.2 Intel Threading Building Blocks . 22
4.2.3 Taskflow . 24

4.3 Consequences for the framework . 25

5 Design and implementation 27
5.1 Task graph generation . 27
5.2 Class design . 29
5.3 Communication . 31
5.4 Debug classes . 33
5.5 Additional features . 34

i

ii CONTENTS

5.6 Summary . 36

6 Evaluation 37
6.1 Metrics . 37
6.2 Setup . 39

6.2.1 Reference measurements . 41
6.2.2 Comparison between log and live data 42
6.2.3 Real-time priority . 43

6.3 Scenarios . 44
6.3.1 Thread count . 45
6.3.2 Update order . 48
6.3.3 Stress test . 50
6.3.4 CPU core pinning . 52
6.3.5 Reference comparison . 54

7 Conclusion and Outlook

List of Figures

List of Tables

Listings

Bibliography

57

60

61

63

65

Chapter 1

Introduction

Robots play an increasingly important role both in industry and in everyday life and
become an important part of it. Autonomous robots in particular have to process a large
amount of data provided by the sensors that allow them to perceive their environment.
This processing is a big challenge since the available resources of a mobile robot are limited
and must therefore be used in the most efficient way. In recent years, a trend towards
multi-core processors has developed on the hardware side that also require changes on
the software side to be used properly. This thesis follows this trend and improves the
multi-core usage of an existing robot framework for the humanoid robot NAO that is used
by the team Nao Devils of the Technical University of Dortmund during the RoboCup
competition.

This chapter first presents details about the RoboCup competition and the NAO robot
and then explains the motivation and goal of this thesis.

1.1 About RoboCup

RoboCup is a worldwide competition where teams of universities from different countries
and continents compete in different challenges in the field of autonomous robots and
artificial intelligence. Playing soccer as a grand challenge problem is the main focus in most
RoboCup leagues [22] and acts as an application of current research and development in
this area. Nevertheless, there are also leagues that develop robots for rescue, logistics, or
home assistance. All participants come together every summer to perform a tournament
that honors the best teams in each discipline. The tournament-style competition allows
the teams to compare their work with others and shows the performance in real-world
scenarios.

RoboCup’s objective is to support the research on autonomous robots by defining an
ultimate goal for the future: to beat the current World Cup soccer champion in 2050
with humanoid robots according to the official FIFA rules [23]. This way, RoboCup

1

2 CHAPTER 1. INTRODUCTION

wants to accelerate the development of the required hardware and software under the
assumption that the new gained knowledge can be reused for other purposes as well. For
example, similar image processing algorithms may be used for autonomous cars, similar
robots may be used for nursing in the future or artificial intelligence may guide a robot to
rescue a buried human out of a collapsed building. After the competition, RoboCup also
organizes a symposium that allows the teams to present their research in form of posters or
presentations and to get in contact with other people to discuss their work. Furthermore,
all successful teams have to publish at least a part of their work, for example, the program
code, to qualify for the RoboCup the following year.

The robot soccer team of the Technical University of Dortmund called Nao Devils has
been participating in the Standard Platform League (SPL) since 2008. The SPL forces all
teams to use the same type of robot. This robot called NAO is manufactured by SoftBank
Robotics. It allows the teams to focus on the software development and forces them to
exploit the given hardware as best as possible. During a game, five NAOs per team fight
for the ball on a field measuring 9 by 6 meters and try to score as many goals as possible
within 20 minutes of playing time [24]. Recently, the team Nao Devils participated in
RoboCup in Sydney 2019 and took 4th place out of 20.

The team consists of employees, students, and volunteers that continuously improve
the huge code base and implement new features, enhance the image processing, develop
better motion algorithms, or adjust the behavior to deal with new situations and rule
changes. For preparation for RoboCup in summer, the team also participates regularly in
the German Open that takes place every year in spring. The German Open is a smaller
version of the RoboCup for local teams from Germany and surrounding countries and is
held in Magdeburg.

1.2 About the NAO

The NAO is a battery-powered humanoid robot manufactured by SoftBank Robotics,
formerly known as Aldebaran Robotics. It has an integrated x86 processor, two HD
cameras, 25 servo motor controlled joints, an inertial sensor unit, speakers, microphones,
offers built-in WLAN, LAN, and much more. SoftBank Robotics releases new versions
of the NAO from time to time that fix issues, improve the product, and introduce new
features. In figure 1.1, the new NAO version 6 is shown, which has gotten a newer CPU,
better cameras, some motor upgrades, and a few design and software changes. Instead of
just one single-core CPU with simultaneous multithreading, the new version is equipped
with a quad-core Intel Atom E3845 CPU from the Silvermont series, which runs at 1.91
GHz and also features a small integrated General Purpose GPU. It is supported by 32 KB
of L1 instruction cache and 24 KB of L1 data cache per core and it has a shared 1 MB L2
per two cores [8]. Furthermore, the amount of available main memory increased from 1

1.3. MOTIVATION 3

Figure 1.1: Three NAOs version 6 by Nao Devils defending the soccer goal in a game against
Nao-Team HTWK Leipzig during Robocup 2019 in Sydney.

GB to 4 GB [28]. As the previous version, each NAO runs a Linux-based operating system
with the PREEMPT_RT patch [13], which ensures the required timings for controlling
servo motors and processing sensor data.

1.3 Motivation

While the rules are changing every year aiming to get as close as possible to the official
FIFA rules, the demands on software and hardware are increasing as well. The latest rule-
changes include natural lighting conditions, a new black-and-white spotted ball, which is
harder to distinguish from other objects, more complex behavior requirements like kick-in
or penalty kick, and a new carpet with artificial turf hampering the walk [24]. Over the
last years, the Nao Devils team met the increasing requirements using more demanding
algorithms. For example, they have recently designed

• a platform to execute and train CNNs using the YOLO (You Only Look Once) frame-
work for image segmentation to detect other robots or to generate ball hypotheses
[20, 29],

• an implementation of a multi-hypotheses Kalman filter for world modeling [10],

• a walking engine based on the Flexible Linear Inverted Pendulum Model [30],

• a path planning algorithm with obstacle avoidance,

• a heuristic whistle detection using FFT analysis

and much more, which is explained in detail in the team report [27]. The robot executes
most of these algorithms simultaneously and in real-time on the internal CPU, which is

4 CHAPTER 1. INTRODUCTION

highly limited, especially in the previous NAO version 5. Since the old NAO version
only offered a single-core CPU, the current framework does not include functionality to
distribute the work onto additional cores. When running the existing program code on
the CPU of the new NAO version 6, it is still limited by the speed of a single core, which
increased only slightly compared to the old version. As a result, the remaining three cores
of the new quad-core CPU are mostly unused.

This thesis develops an approach that overcomes this limitation by designing an archi-
tecture that distributes the workload over multiple cores while maintaining the modular
structure of the framework and keeping changes to individual modules at a minimum.
The objective is to reduce the overall execution time in order to free resources for addi-
tional more demanding algorithms. The added parallelization should be as transparent as
possible to developers working on a module and the framework should abstract from the
technical details. Furthermore, the framework must remain efficient and real-time capable
while being easy to use. Therefore, the debugging functionalities must not be restricted,
but on the contrary, new possibilities should be created to make the added parallelization
easy to understand for other developers.

1.4 Structure

The thesis consists of five main parts. First, we give an overview of the terms framework
and real-time, which are used as a basis in the following chapters. Second, we analyze the
current situation. Therefore, we outline the current design of the framework, formulate
the requirements on the parallelization and reveal possible improvements offered by the
framework. Third, we cover existing parallelization approaches in other robotic frame-
works as well as libraries that already handle the parallelization of program code and
we consider if they may be suitable to integrate. Fourth, we explain the implementation
details of the best promising solution as well as the challenges, which occurred. Fifth,
we evaluate the solution during several small test games. Therefore, we investigate the
robot’s performance executing the adjusted framework in different scenarios and determine
the gained speed up. Finally, we discuss if the objective was achieved and give possible
starting points for further improvements.

Chapter 2

Prerequisites

This chapter provides some basic information concerning frameworks and real-time used
in the following chapters.

2.1 Framework

In software development, a framework consists of multiple classes, which first increase the
reusability of program code in a software project and second preserve an abstract design the
programmer should follow in order to interact with it. This helps structuring the program,
reduces the need for individual design choices the programmer has to take, and provides
reusable components, which might be helpful to reduce complexity [11]. In this case,
the Nao Devils framework introduces the concept of modules and representations, cares
about the class instantiation and execution, manages the memory, and offers interfaces
for communication between different modules, threads, or computers. Furthermore, it is
integrated into a simulation software, which offers a 3D simulation, has integrated debug
interfaces, and much more. Details on that will be explained in chapters 3 and 5.

2.2 Real-time

When talking about the correctness of an application or algorithm, it is often referred
to the logical correctness. However, in several circumstances, this is not enough because
temporal constraints come into play and have to be considered. This the case in time
critical applications whose environment forces the algorithm to react to an input within
a given time. For example, a program that controls a physical experiment using some
actuators and sensors must keep the system within its limits to prevent damage. If the
reaction to an external event takes too long, the experiment may fail.

The term real-time means that a task must finish its execution within a given time
span called deadline. If the task finishes too late, its result might be less usable, completely

5

6 CHAPTER 2. PREREQUISITES

Hard real-time

Firm real-time

Soft real-time

r

Usefulness

Timed

r

Usefulness

Timed

r

Usefulness

Timed

Figure 2.1: Usefulness of the task’s result after missing the deadline d.

unusable, or it might cause harm, injury, or damage. When considering the consequences
of a missed deadline, tasks can be grouped into three categories, which are also visualized
as graphs in figure 2.1 [3]:

• A hard real-time task missing its deadline may cause a catastrophe. For example,
an autonomous driving system in a car must react to sensor inputs on time under
any circumstances to prevent collisions with appearing obstacles. If the deadline is
missed, the usefulness of the result is negative.

• A firm real-time task missing its deadline makes the generated results completely
useless. For example, when playing a video or audio stream, frames that are decoded
too late may be skipped and result in a reduced playback quality but do not cause
harm. If the deadline is missed, the usefulness is zero.

• A soft real-time task missing its deadline makes the generated results less useful. For
example, in human-machine interaction, a delayed reaction to mouse movement or
keyboard input might annoy the users but do not bother them if it happens rarely.
If a deadline is missed, the usefulness decreases over time.

The software on the NAO can be classified into three categories:

• Motion control has firm real-time requirements. To ensure smooth movements of the
robot, it has to control its servo motors constantly based on gained sensor measure-
ments. The microcontrollers for the servo motors require periodic position updates
from the CPU to accomplish that. If the program misses the deadline and updates
the target position too late, the robot might stutter. Nevertheless, if this happens
rarely, the robot should be able to continue its motion and the missed deadline does
not result in a complete system failure.

2.2. REAL-TIME 7

• Cognition and behavior have soft real-time requirements. The robot has to avoid
obstacles and makes its decisions based on the images captured by the cameras during
the game. The processing of each image must be completed until the next one is
available to keep up with the constant frame rate and to react to changing conditions
quickly. Although a delay in processing increases the response time and permanently
results in poorer game performance, it does not affect the robot’s stability and does
not make it fall down.

• Program code for debugging, logging, and network communication is non-time-
critical and does not affect the autonomy of the robot itself.

8 CHAPTER 2. PREREQUISITES

Chapter 3

Analysis

In this chapter, we illustrate the current framework design and provide possible starting
points that are suitable for parallelization. Furthermore, we discuss these staring points
and outline their advantages and disadvantages. Finally, we define a list of requirements for
the implementation that ensure a correct and efficient operation of the robot framework.

3.1 Current Situation

The current Nao Devils framework is based on B-Human’s code release from 2015 [26].
B-Human is the SPL team of the university of Bremen, which releases the majority of their
code to the public after every RoboCup and offers a good starting point for many other
teams. The Nao Devils team has adjusted many parts to fulfill their needs and replaced
the majority of modules by their own ones. The last state can be found in the code release
from 2019 [17].

The framework is entirely written in C++ and consists of the following three main
parts:

1. A flexible robot infrastructure,

2. a 3D simulator with debug interface, and

3. several deploy and setup tools for cross-compilation and installation procedures.

Infrastructure The robot infrastructure follows a blackboard architecture [9] that con-
sists of representations which are provided and required by modules. A representation is
a C++ struct that contains arbitrary data and is stored in a global table "blackboard". A
module is a C++ class that operates on these representations. Every representation is pro-
vided by exactly one module and multiple other modules can require it and gain read-only
access to it. This allows different modules to communicate over these representations and
to separate program code and knowledge into logical units and small pieces. The design

9

10 CHAPTER 3. ANALYSIS

principle is to keep the modules as small as possible to reduce the complexity and to allow
easy debugging by having many well-defined interfaces. During the framework start up,
the module manager reads a configuration file that maps each representation to a module
that becomes the active provider for it. Moreover, it ensures the correct execution order of
every module and keeps track of the dependencies. Furthermore, the module manager can
be reconfigured during runtime via commands. That allows to compare, for example, two
image processing algorithms, which are implemented in different modules, by interactively
switching between both of them. At any time, each representation is provided by exactly
one module. Each time the configuration changes, the module manager recalculates the
dependencies and the framework continues the execution.

1 STREAMABLE(Bal lPercept ,
2 {
3 ENUM(Status ,
4 { ,
5 notSeen ,
6 seen ,
7 }) ,
8

9 (Status) (notSeen) s tatus ,
10 (Vector2 f) (Vector2 f : : Zero ()) pos i t ionInImage ,
11 (f l o a t) (1 . f) radiusInImage ,
12 }) ;

Listing 3.1: BallPercept representation.

A representation is a data type that is generated via the C++macro STREAMABLE.
The example representation BallPercept can be seen in Listing 3.1. In this context, stream-
able means that all data can be serialized into either a human-readable string, which can
be printed out, or a binary data stream, which can be transferred over the network or
saved on disk. Therefore, the macro generates a C++ struct that contains the specified
properties with their given default values and a serialization function. This serialization
function is able to convert all default data types into the required binary or textual for-
mat but can be implemented manually if necessary, for example, when using complex data
types.

New modules are defined similarly. An example definition of the IMUModelProvider
is shown in Listing 3.2. MODULE(...) is another C++ macro that generates an abstract
class, which the programmer must implement, and uses the following keywords:

• PROVIDES(<representation>) adds an update method that gets called once
per cycle by the module manager passing a reference to the given representation
inside the blackboard. This function is pure-virtual and must be implemented by

3.1. CURRENT SITUATION 11

1 MODULE(IMUModelProvider ,
2 { ,
3 REQUIRES(I n e r t i a l S e n s o r D a t a) ,
4 REQUIRES(FrameInfo) ,
5 USES(MotionInfo) ,
6 PROVIDES(IMUModel) ,
7 LOADS_PARAMETERS(
8 { ,
9 (bool) (t rue) enableWhileWalking ,

10 (IMUModelAccelerat ionFi lterParameters) s tandAcce l e ra t ion ,
11 (IMUModelAccelerat ionFi lterParameters) walkAcce lerat ion ,
12 (IMUModelRotationFilterParameters) standRotation ,
13 (IMUModelRotationFilterParameters) walkRotation ,
14 (f l o a t) (9 . 8 1 f) grav i ty ,
15 }) ,
16 }) ;

Listing 3.2: IMUModelProvider module definition.

the sub-class. It performs all the necessary computations to fill the passed represen-
tation.

• REQUIRES(<representation>) adds a class property that gives read-only ac-
cess to the specified representation inside the blackboard. Furthermore, it ensures
that the representation is filled by the configured provider before executing any
update methods of the module being declared.

• USES(<representation>) is similar to REQUIRES, but it does not guarantee
that the representation is filled before the execution of the module and the data may
be generated in the cycle before. This is needed to resolve cyclic dependencies and
should be used only when necessary.

• LOADS_PARAMETERS([<parameters>]) adds class properties as configu-
ration parameters and is related to the STREAMABLE macro explained earlier.
The framework loads all specified parameters automatically from a configuration file,
which can be edited easily via the user interface explained later.

For each module, the framework keeps track of the required and provided representa-
tions. Before the execution of the first cycle, the module manager brings the providers
for all representations into the correct order to ensure that all requirements for each mod-
ule are met on execution. If the requirements cannot be fulfilled, for example, because
of a missing provider for a required representation or circular dependencies, the module
manager prints out an error message and aborts the start-up.

12 CHAPTER 3. ANALYSIS

SpeedRequest

(...)

Behavior

(...) (...)

LinePercepts

JointSensorData

NaoProvider

InertialSensorData

PatternGenerator

BallPercept FootSteps

WalkingEngine

CameraProvider

LowerImage UpperImage

BallDetector FieldLinesDetector

JointRequest

IMUModel

IMUModelProvider

NaoProvider

Cognition Motion

Figure 3.1: Simplified directed acyclic graph modeling the dependencies between modules shown
in red and representations shown in blue.

As an example, figure 3.1 visualizes these dependencies for some representations and
modules currently present in the framework. Modules are shown in red, representations
are shown in blue. Any module that provides representations that are required by a
subsequent module must be executed first. The execution of the BallDetector cannot
be started before the execution of the CameraProvider, which provides the LowerImage
and UpperImage. Analogous to this, the execution of the Behavior must wait until its
requirements are also met. Furthermore, all modules are divided into two parts motion
and cognition shown in green, which are executed in two separate threads. Both threads
operate mostly on separate memory regions to avoid race conditions on the data. That
also means that there are currently two blackboards containing the representations for
motion and cognition and there are also two graphs containing the dependencies between
the modules and representations.

There are several reasons for this separation:

1. Different triggers: a new motion cycle is triggered by new sensor data being available
from the robot via the NaoProvider and it is finished by sending new actuator data
to the server motors. In contrast to that, a new cognition cycle is triggered by
new images being available from the CameraProvider and finished by sending the
required walking speeds to the motion cycle.

3.1. CURRENT SITUATION 13

2. Different frequencies: new sensor data is available 83 times per second and new
image data is available 30 times per second. Furthermore, the actuator data should
also be sent 83 times per second to the servo motors to ensure smooth and stable
motions.

3. Different priorities: in order to ensure the timings of both threads, they are assigned
a Linux real-time priority. However, to further ensure the firm real-time requirements
explained in section 2.2, the motion cycle is preferred over the soft real-time cognition
cycle by giving it a higher priority. This way, the motion cycle is able to preempt
the execution of the cognition cycle in case new data is available that has to be
processed first.

Data that is shared between both threads is copied from one blackboard to the other at
the end of each cycle. In the shown example in figure 3.1, the representation SpeedRequest
is shared and acts as a connector between both threads. Additionally, a message queue
is used as a data buffer to ensure lock-free operation and independent data access. This
way, neither the sending nor the receiving thread has to wait for the other to finish its
operation and all data is consistent and up-to-date. Because of these two copy operations,
the amount of shared data should be kept as low as possible and is only performed for
small representations where necessary.

Figure 3.2: Simulator screenshot.

14 CHAPTER 3. ANALYSIS

Debugging The framework also offers a simulator shown in figure 3.2, which has three
main functionalities:

• Simulating one or multiple robots in a 3D scene with generated physics,

• connecting to a physical robot via network, or

• replaying a recorded log file, for example, out of a real game.

The 3D simulation is based on the Open Dynamics Engine (ODE) and OpenGL. During
the simulation, modules that usually implement the connection to the physical robot are
replaced by a module that is provided by the simulator. This way, all representations
containing real sensor data are now filled with the calculated values and the remaining
module infrastructure runs in the same way like it would on the physical robot. Similarly,
all representations containing the actuator output are transferred to the 3D scene and
physics simulation.

Because most important data structures like representations and configurations are
streamable, the simulator is able to show a live view of all values that might be interesting.
This is also possible while being connected to a physical robot via network, which allows
real-time debugging of errors that might not happen during simulation. Additionally, the
developer can set each representation to a fixed value manually. That allows, for example,
to override the SpeedRequest and set the robot to a fixed position. This way, the developer
can test the image processing and put different objects in front of the cameras, without
bothering about a walking robot. This mechanism also allows to test a module with user-
defined input values if the developer overwrites the required representations of a module
with test data and monitors the module’s output.

In order to examine errors that, for example, happened during a game, the robot can
save configured representations into a file automatically at the end of each cycle. The
generated log file allows to replay the scenario in the simulator for debugging purposes
and also allows to test new image processing algorithms in old recorded games.

Compilation The framework’s compilation process is handled by a tool called Mare1.
Mare is a cross-platform build automation tool that keeps track of all source files and
libraries and is able to generate project files for a variety of IDEs like Microsoft Visual
Studio2, CodeLite3, and others. Furthermore, it allows to specify include paths and linker
options for custom libraries via an own configuration language. That makes it possible
to add new C++ libraries easily while taking care of most platform, architecture, and
compiler specific adjustments.

1https://github.com/craflin/mare
2https://visualstudio.microsoft.com/
3https://codelite.org/

https://github.com/craflin/mare
https://visualstudio.microsoft.com/
https://codelite.org/

3.2. POSSIBLE IMPROVEMENTS 15

3.2 Possible improvements

As already mentioned in section 3.1, the current Nao Devils framework does all computa-
tions in two threads: motion and cognition. However, the vast majority of CPU resources
is especially needed in the cognition cycle for image processing. Because many motion
related calculations have been linearized in the framework and the demands on motion
have not increased as much as on cognition, the execution time needed for motion is only
a fraction of that of cognition. Since the NAO offers a quad-core CPU, but a single thread
cannot use more than a single core, only about one quarter of the available computing
power is used.

To improve this situation, the workload must be distributed over several threads that
must be created. For the current framework, this is possible on three different layers:

1. Cycle-Layer : some modules that are currently executed sequentially inside the cogni-
tion cycle are moved into new independent ones. For example, the behavior modules
can be separated from the image processing and the image processing can be split
up into separate cycles for the upper and lower camera. Even the detection of in-
dividual features like the ball, other robots, or the field lines can be separated into
their own cycles.

2. Module-Layer : since all modules build up a graph structure via their provided and
required representations, independent modules can be executed simultaneously. As
long as all necessary requirements of a module have already been provided, it is
ready to run. That way, for example, image processing modules requiring the image
data can start in parallel once the camera captures a new frame.

3. Execution-Layer : CPU-intensive modules, for example, for the inference of neural
networks for the ball recognition, spawn additional threads in order to parallelize
the workload. This way, individual modules can process the images for the upper
and lower camera simultaneously or evaluate possible ball hypothesis in parallel.

Subsequent, we consider the advantages and disadvantages of each approach:
Adding additional cycles that split up the cognition processing is a quite easy approach

from the implementation perspective because the required infrastructure for the execution
of two cycles is already available, which can be extended to multiple ones easily. These
changes include the addition of more message queues for the communication between them
and the choice of a suitable trigger that starts the module execution once all required input
data is available. However, on the one hand, this approach has the drawback that more
data must be copied because every thread has its own blackboard, which contains copies
of the representations provided in other threads. On the other hand, the overall latency,
for example, to process a new camera image and generate a new SpeedRequest increases.

16 CHAPTER 3. ANALYSIS

If consecutive cycles have long execution times, the first cycle is already triggered again
while the previous processing has not yet been completed. Regardless of this, the Nao
Devils team considers adding an additional audio cycle for whistle and voice detection in
future because new audio data arrives independent at a different frequency than image or
sensor data and audio processing will play an increasingly important role in the future of
the Standard Platform League in RoboCup.

The parallel execution of independent modules, which are currently arranged in a
single logical cycle, requires major adjustments to the module manager. The current
implementation uses a precalculated and ordered list of providers that is generated during
framework start up and is used for a consecutive execution of each module. Furthermore,
the module manager does not currently spawn any additional threads and is executed
synchronously in the motion or cognition thread. Whenever a module finishes, the module
manager takes over and executes the subsequent module in its list. A parallel execution
of modules requires the management of multiple threads while taking care of a sensible
module-thread association and the compliance with their dependencies. Nevertheless, this
approach is mostly transparent to the module’s programmers. In particular, compared to
the approach on the cycle-layer explained before, it does not require the manual association
of a module into a specific cycle that requires knowledge about all available cycles and
their purposes as well as taking care of dependencies that must be considered to minimize
copy operations.

The profit of manual parallelization of algorithms inside a single module highly de-
pends on the used algorithms. While processing the upper and lower image in parallel is
quite easy in many cases, further division into independent work units is more challeng-
ing. Moreover, the current framework does not offer any functionality to spawn multiple
threads for a module or to manage a pool of threads. Without a common framework-
wide mechanism providing such a functionality, the result would be an increasing num-
ber of modules implementing their own thread spawning and joining functionalities and
handling the inter-thread communication on their own. That leads to overcommitment of
more working threads than available CPU cores, which can reduce the overall performance
drastically because of unnecessary context switches.

In summary, to avoid redundant individual thread management inside modules and
to keep the configuration effort and complexity for module developers at a minimum, an
intelligent framework-wide solution seems reasonable. That excludes approaches that are
based on the cycle layer and that require manual adjustments and knowledge needed for
optimal performance. Therefore, a dynamic approach considering the inherent parallel
graph structure at the module-layer is more suitable while possibly offering an interface
at the execution-layer for modules that can be splitted into independent work units and
allow additional parallelization.

3.3. REQUIREMENTS 17

3.3 Requirements

The goal of this thesis is to execute as many modules as possible simultaneously that are
able to run in parallel according to their dependencies. In order to evaluate the different
concepts that we introduce in the following chapters, some requirements were defined that
need to be considered:

1. The concept utilizes all available CPU cores.

2. The concept prioritizes the motion cycle over the cognition cycle to ensure smooth
movements of the NAO.

3. The concept switches efficiently between modules. There are many modules doing
very simple and fast calculations that must not be slowed down, for example, because
of frequent process switches.

4. The concept requires a minimum of communication. Each thread operates on its own
data and minimizes communication overhead for serialization or synchronization.

5. The concept requires no manual adjustments and configurations. Developers working
on individual modules should not care about the parallelization happening in the
background. At best, they have more available computing time without the need to
change their code.

18 CHAPTER 3. ANALYSIS

Chapter 4

Framework and library research

After the presentation of the current framework design, possible improvements, and the
requirements needed for parallelization, this chapter evaluates existing approaches for
parallel programming that are suitable for this purpose. The first section covers multi-
core approaches of existing robotic frameworks that are used in the context of Robocup
and the second section covers libraries for parallel programming that can be integrated
into existing software.

4.1 Approaches for robotics

In the SPL league, many teams use the B-Human framework as a basis for their develop-
ment. In B-Human’s recent code release from 2019, they have improved their multi-core
support for the NAO version 6 to increase the resource utilization. Another framework
is called ROS, which is used by many robotic teams in RoboCup and industry and uses
multiple cores natively by design. We outline their concepts hereafter and analyze if a
similar design is applicable for the Nao Devils framework.

4.1.1 B-Human framework

The B-Human framework is also based on the blackboard design pattern explained in
section 3.1 and the structure is still quite similar to that used by Nao Devils. In order
to improve the utilization of the NAO version 6 CPU, B-Human increased the number
of cycles and thus threads and made the assigned modules configurable [25]. In the Nao
Devils framework, each module is assigned to a fixed thread at compile time. Instead,
B-Human extended the module manager configuration to specify which provider of which
representation runs in which thread. This mostly corresponds to the optimizations at the
cycle-layer mentioned in section 3.2. This way, B-Human splitted the cognition cycle into
three parts: image processing for the upper camera, image processing for the lower camera,
and behavior computation using the results generated earlier. That allows to process both

19

20 CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH

images in parallel. Under the assumption that the motion and behavior calculation usually
does not need much time, this still has the drawback that there are not more than two
threads doing most of the computations. However, the configuration based approach has
the advantage that modules can be easily assigned to another cycle without the need of a
recompilation like in the current Nao Devils framework. That allows to experiment with
different module to thread configurations and different thread counts easily in order to
find the best solution.

Unfortunately, some requirements mentioned in section 3.3 are not met using this
approach:

• Requirement 1 because the effectiveness of the parallelization is highly dependent
on the configuration and the number of cycles.

• Requirement 4 because communication times increase if large representations are
shared and copied.

• Requirement 5 because every developer that adds a new module must decide which
cycle it belongs to.

4.1.2 ROS

ROS stands for Robot Operating System, was developed by the Stanford University and
Willlow Garage for their service robots and evolved to a very flexible open-source robot
framework. Although the name suggests it, ROS is not a classic operating system itself.
Instead, it functions on top of an existing operating system. ROS adds a communication
infrastructure and presets a structure that allows the developer to reuse existing code and
to develop interchangeable software modules. Moreover, it is designed for decentralized
multi-agent operation, allowing multiple robots and computers to act as a single compute
cluster [19].

ROS2 is a major update of ROS that addresses some of the issues present in the
version before like the lack of support for real-time, embedded systems, and non-ideal
network communication. It further focuses more on real-world scenarios than only research
applications. Therefore, breaking API changes especially at the communication layer that
makes ROS2 incompatible with ROS were made. However, the basic principles outlined
hereafter remained the same [6].

The framework utilizes the concept of nodes, messages, and topics [19]. A node is an
independent software module that performs computations and allows the logical separation
between different tasks. Each node sends and receives messages to communicate with
other nodes. A message contains arbitrary data that is specified via an interface definition
language and allows automatic serialization and deserialization. Each message is sent over
the network using a specified topic. The topic mechanism follows the publisher-subscriber

4.2. GENERAL APPROACHES 21

pattern allowing each node to publish and/or subscribe to multiple topics it is interested
in. In ROS, a separate master process ensures and manages the correct connection of
multiple nodes using the same topics. Thus, messages, which are passed via one of these
topics, are transferred to the correct nodes automatically. ROS2 removes the need for a
separate master process by replacing it with the Data Distribution Service (DDS) that
performs automatic node discovery and adds support for deadlines and fault-tolerance
[14]. In both cases, once a node receives a new message, it processes the received data and
generates new messages for other nodes. That enables inherent multi-core support because
each node runs as a separate operating system process which allows to run multiple nodes
in parallel that, for example, listen to the same topic. Moreover, each node is able to start
additional threads for parallelization if necessary.

Although the concept is quite different from the Nao Devils framework, there are
several similarities:

• ROS nodes are similar to modules. Both concepts capsule independent software
modules that can communicate with each other.

• ROS messages and topics are similar to representations. Both types contain and
transfer arbitrary data to other nodes or modules.

• The ROS master process and the DDS in ROS2 are similar to the combination of
blackboard and module manager. Both principles care about the transfer of data
and ensure the start of the correct next node or module.

Nevertheless, an approach similar to ROS or ROS2 is not feasible for the Nao Devils
framework when considering the requirements from section 3.3. First, the design principle
to keep the modules as small as possible is not reasonable when running each one in an
individual process like ROS nodes. Since the framework contains modules that consist
of just a few operations, the overhead for context switching to another process is too
high and requirement 3 cannot be met. Second, passing messages over the network in-
troduces even more overhead and latency, which violates requirement 4. Representations
can be very small in the range of a few bytes and the network stack with serialization and
deserialization might be more complex than the providing module itself.

In summary, a ROS-like concept significantly increases the module switching and com-
munication times and is not applicable for the Nao Devils framework.

4.2 General approaches

Outside of robotics, there are several libraries for parallel programming that execute a
set of tasks on a set of CPU cores or threads. Many of them also support dependencies
between different tasks. That problem is very similar to the idea of module parallelization

22 CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH

in the Nao Devils framework. Each module can be compared to a task that is able to be
executed only if all of its requirements were fulfilled. Therefore, in this chapter, we cover
and compare the libraries OpenMP, Intel Threading Building Blocks, and Taskflow that
support the parallelization of multiple tasks with dependencies.

4.2.1 OpenMP

The OpenMP API is one of the widest known and oldest interfaces for parallel program-
ming for shared memory multiprocessors that became an industry standard in 1997. The
initiative was supported by application and compiler specialists from the industry who
wanted to create a vendor independent standard for parallel programming. Before, each
machine had its own programming model that was incompatible with other ones while
OpenMP finally merged and standardized the different approaches and specified a com-
mon interface that allows to execute the same code on different platforms. The OpenMP
specification is available for Fortran and C/C++ [4].

While OpenMP versions until 2.0 concentrate on the parallelization of loops using
worksharing and synchronization mechanisms, OpenMP 3.0 introduces the concept of
tasks that allows the programmer to write multiple independent work units without the
need to care about scheduling [1]. This further improves in OpenMP 4.0 by the addition of
task dependencies [18] that may qualify OpenMP for the parallel execution of modules in
the Nao Devils framework. However, because OpenMP is designed as a compiler extension
and heavily relies on compiler directives, it is very inflexible and runtime changes are very
limited. For example, in OpenMP, a new task is defined using the #pragma omp task

shared(x) depend(in: x) directive that statically specifies the dependency on a shared variable
x. Since the Nao Devils framework allows the runtime configuration of modules and
representations, a static configuration like this is inapplicable.

Furthermore, the realization of OpenMP as a compiler extension has another drawback.
While Clang 9, which is used as C++ compiler for all Linux targets including the NAO,
supports at least OpenMP 4.5 [5], the Microsoft Visual Compiler, which is used for the
simulation under Windows, supports only OpenMP 2.0 [15] and is thus missing task
support. Because the simulated robot running under Windows should perform as similar
as possible to the real NAO, it is not sensible to just disable the multi-core support for
this platform.

In summary, OpenMP is not applicable for the desired purpose.

4.2.2 Intel Threading Building Blocks

In order to address some of the issues with OpenMP, Intel developed Threading Build
Blocks (TBB) in 2007. In contrast to OpenMP, the development of TBB focused on a
more dynamic task-based approach right at the beginning and is built as a C++ library

4.2. GENERAL APPROACHES 23

instead of a language extension. Furthermore, it uses native C++ language features
instead of additional compiler directives. That makes it mostly platform and compiler
independent and functions on Windows as well as Linux using GCC, Clang, and MSVC
[21].

1 us ing node_t = continue_node<continue_msg >;
2 us ing msg_t = const continue_msg&;
3

4 tbb : : f low : : graph g ;
5 node_t A(g , [] (msg_t) { std : : cout << "A\n" ; }) ;
6 node_t B(g , [] (msg_t) { std : : cout << "B\n" ; }) ;
7 node_t C(g , [] (msg_t) { std : : cout << "C\n" ; }) ;
8 node_t D(g , [] (msg_t) { std : : cout << "D\n" ; }) ;
9 make_edge (A, B) ;

10 make_edge (A, C) ;
11 make_edge (B, D) ;
12 make_edge (C, D) ;
13 A. try_put (continue_msg ()) ;
14 g . wai t_for_al l () ;

Listing 4.1: Intel TBB dependence graph example.

Besides loop-based parallelization instructions similar to OpenMP, TBB supports the
creation of individual tasks and specification of dependencies during runtime. A minimal
example is shown in listing 4.1. In this case, four tasks A, B, C, and D are created in
lines 5 to 8 and each of them prints out a letter. Further, the inserted graph edges in lines
9 to 12 require task A to be finished before the execution of B and C and both tasks B
and C to be finished before the execution of task D. When using a thread pool of at least
two threads, the execution of this task graph can be parallelized. After the completion of
task A, the two subsequent tasks B and C are executed concurrently while task D waits
for the completion of both. The big advantage is that the library cares about the needed
thread spawning, synchronization, and task scheduling and the programmer can focus on
the implementation itself.

From the implementation side of TBB, the task scheduling is realized using a work-
stealing scheduler [12]. A work-stealing scheduler can be used to execute tasks graphs and
the performance has already been examined by [2] in 1999. They showed the expected run-
time to be limited only by the sequential part of the workload if the number of processors
goes to infinity. Each task is represented as a node and the dependencies between them as
a directed edge that compose a directed acyclic graph. The scheduler uses a double-ended
queue (deque) for each available processor or thread in this case, which contains all tasks
that are ready to run and are executed from the bottom to the top. As soon as a task
finishes, all subsequent tasks that have fulfilled dependencies are placed at the bottom of

24 CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH

the deque of the current processor and are likely to be executed next. Whenever a deque
is empty, the processor steals tasks from the top of another random non-empty deque.

This strategy is cache-friendly when considering the design of modern processors.
CPUs are supported by a hierarchy of cache memory that greatly reduces the execu-
tion time whenever required data is available there instead of main memory. Further, at
least the fastest and smallest caches are usually exclusive for each CPU core. As already
mentioned in section 1.2, the CPU of the NAO has 32+24 KB of L1 cache per core. The
strategy stealing tasks from the top of another deque but executing from the bottom en-
sures that CPU caches are used efficiently were possible because data that was generated
by a task recently is probably being used again by tasks depending on it. Whenever data
is used that has recently been accessed, it is likely to be stored in the fast CPU cache.
That is also very helpful for the Nao Devils framework because representations, which are
passed along the dependencies, are very likely to be used again after providing and should
be available as fast as possible.

Intel TBB and the used scheduling mechanism introduced briefly seem applicable for
the use in the Nao Devils framework and could be used from a theoretical point of view to
execute the modules using tasks in multiple threads while taking care of the dependencies
using graph edges.

4.2.3 Taskflow

Another more recent approach for task-based parallelization is Taskflow. Tsung-Wei
Huang developed the library at the University of Illinois in 2019. It is comparable to
Intel TBB but provides an even more modern and easier programming model and im-
proves the performance [7].

1 t f : : Taskflow task f l ow ;
2

3 auto [A, B, C, D] = task f l ow . emplace (
4 [] () { std : : cout << "A\n" ; } ,
5 [] () { std : : cout << "B\n" ; } ,
6 [] () { std : : cout << "C\n" ; } ,
7 [] () { std : : cout << "D\n" ; }
8) ;
9

10 A. precede (B, C) ;
11 D. succeed (B, C) ;
12 t f : : Executor () . run (ta sk f l ow) . wait () ;

Listing 4.2: Taskflow code example.

4.3. CONSEQUENCES FOR THE FRAMEWORK 25

The same example from listing 4.1 for Intel TBB reduces to the code shown in listing
4.2 for Taskflow. It also uses a similar work-stealing scheduling algorithm but was further
improved. The authors compare Taskflow to OpenMP and Intel TBB using several bench-
marks. For example, they evaluate the performance impact of Taskflow on the training of
a three-layered DNN and show a speed up of 38% compared to OpenMP tasks and 14%
compared to Intel TBB using 16 cores. However, their performance evaluation mainly
focuses on very heavy workloads on many-core systems with up to 64 cores that may not
be applicable to the NAO [7].

Furthermore, their research also focuses on the development experience of the pro-
grammer. Therefore, as already mentioned, they try to keep the interface of the library as
intuitive as possible. They compare the effort in terms of time, lines of code, and cyclo-
matic complexity to integrate the library into an existing project with the other libraries
and they note a significant advantage when using Taskflow. Apart from the the imple-
mentation details, which highly depend on the programmers skills, the library also offers
debug interfaces. When debugging parallel code, it can be hard to understand the reason
for bad performance or any error that occurs. Therefore, first, Taskflow allows to print
out the current task graph that is currently used for execution and second, it is able to
observe the exact scheduling and timing of each task that is started on every thread. When
considering the Nao Devils framework this is a big advantage because currently, there is
no way to determine the exact order and timing of modules during runtime, which could
be helpful when investigating performance issues that happen rarely or are unpredictable.

4.3 Consequences for the framework

This chapter first presented the concepts for multi-core usage in the B-Human framework
and ROS. It turned out that both approaches do not fulfill the desired requirements for the
Nao Devils framework. Second, it showed that there are several libraries available, which
are usable for the desired parallelization of the Nao Devils framework. However, the oldest
library OpenMP turned out to be inappropriate for this use case due to being too inflexible
and the limited support of the Microsoft Visual Compiler. Intel TBB and Taskflow both
follow a very similar paradigm that sounds more promising. From a theoretical point of
view, both libraries can be used to fulfill at least four out of five requirements from section
3.3:

• Requirement 1 because the number of threads being used can be configured and set
to the physical core count utilizing all available resources.

• Requirement 3 because work-stealing schedulers using a lock-free queue implemen-
tation turned out to be suitable for tasks with data dependencies and have low
overhead.

26 CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH

• Requirement 4 because the communication times are low and all data remains in
shared memory while even cache usage is improved by preferring tasks that depend
directly on a finished task.

• Requirement 5 because the libraries require no configuration for module developers.

However, in none of the libraries shown, prioritization features are available. Neither
can individual tasks be given priority, nor is the library able to preempt running tasks.
Preemption is not even possible for a user-space implementation in Linux. Under the
assumption that each task runs program code that is out of control of the framework
design itself, the only way to suspend the execution is via interrupt. Because interrupts
are handled by the operating system, this mechanism is not available for a user-space
preemption of tasks. A solution for that is to keep each cycle in different thread pools
and to run two instances of the scheduler, where each one can be prioritized like before
using the standard Linux thread priorities. This way, in case a higher prioritized cycle is
able to run, the operating system can preempt the less important cycle. This also mets
requirement 2.

Both libraries also have support for dynamic tasking that allows to spawn even more
tasks out of a running task. When providing an interface to the library for module de-
velopers, it can also be used to parallelize the program code of individual modules. This
approach allows to realize the execution-layer parallelization mentioned in section 3.2 that
can further speed up the execution and which can be used optionally by other developers.

Because Taskflow has better performance, a helpful debug interface, and a clean API
which could potentially be used directly by module developers, we use Taskflow for the
following chapters to implement the module based parallelization.

Chapter 5

Design and implementation

Based on the results from chapter 4, which illustrated different approaches for paral-
lelization, we implemented the most appropriate approach based on Taskflow for the Nao
Devils framework. In this chapter, we outline the details on that as well as the resulting
challenges.

5.1 Task graph generation

In order to integrate Taskflow properly, we developed an appropriate mapping that trans-
forms the module-representation graph shown in section 3.1 to a task graph. For the old
module execution mechanism, it was sufficient to generate a list of providers that is sorted
according to the dependencies. This list was calculated only once during framework start
up or after the modification of the module graph and afterwards, each listed provider was
executed sequentially in every cycle. During the execution itself, the dependencies were
not important anymore.

In contrast to that, due to the absence of a known exact execution order when using
a work-stealing algorithm, the Taskflow library needs to keep track of the dependencies
during runtime. Therefore, it expects a task graph that models the separate execution
units properly. In the following, we explain the details of this conversion. For simplicity
reasons, it is assumed that each module only provides representations that are enabled
in the module manager’s configuration and inactive providers for representations are not
considered. However in reality, the framework allows to switch between different modules
providing the same representation dynamically during runtime. Whenever this happens,
the task graph is generated again.

Let M be the set of modules and R be the set of representations. Then, for an arbitrary
module m ∈ M , the set of required representations is denoted by Rq(m) and the set of
provided representations is denoted by Pr(m).

27

28 CHAPTER 5. DESIGN AND IMPLEMENTATION

Whenever a module specifies to provide a representation using the PROVIDES macro
explained in section 3.1, it must implement an update method that fills the representation.
That makes the update methods the smallest units that can be executed individually and
are therefore considered as tasks from now on. Subsequently, the task graph G := (V, E)
with vertices V := R and edges E := Edep ∪ Eupd can be generated as follows:

Edep := {(ra, rb) ∈ V × V | ∃m ∈M : ra ∈ Rq(m) ∧ rb ∈ Pr(m)} (5.1)

The equation 5.1 for the graph edges ensures that all dependencies between modules
and representations are met. For each pair (ra, rb) of representations, the update for
representation ra has to be executed before the update for representation rb iff there is a
module m ∈M that requires ra and provides rb. That models the same situation present
in the framework and ensures the correct execution order.

Furthermore, the different update methods of a single framework module are often not
thread safe because they may have side effects. Module developers can put data into class
attributes that can be accessed from different update methods. That way, information
that is generated by one update method can be used by the others of the same module.
This is possible because the framework guaranteed the sequential execution of each update
method due to the execution inside a single thread. The parallel execution may violate
this assumption and lead to race conditions. To avoid that, a sequential execution of
update methods for framework modules that are not thread safe, has to be ensured.

Eupd := {(ra, rb) ∈ V × V | ∃m ∈M : ra <m rb} (5.2)

Therefore, equation 5.2 adds dependencies between the provided representations of the
same module m using a known strict total order relation <m. However, a sensible order
<m of update methods must be considered for best performance. Because the number
of modules requiring a given representation varies, it seems reasonable to first provide
representations that have a high number of dependent modules. That increases the count
of ready tasks and thus increases the processor utilization to decrease the overall execution
time. We investigate this assumption and the details on that further in section 6.3.2.

The conversion from the module-representation graph in figure 3.1 to task graphs is
exemplary shown in figure 5.1. Each representation is converted to a task vertex and the
dependencies between modules are resolved to dependencies between tasks that are shown
as red edges. Furthermore, the dependencies between update methods of the same module
are shown as blue edges.

5.2. CLASS DESIGN 29

SpeedRequest

(...)

LinePercepts

JointSensorData InertialSensorData

(...)

BallPercept FootSteps

LowerImage UpperImage

JointRequest

IMUModel

Cognition Motion

Figure 5.1: Task graphs generated from the exemplary module-representation graph in figure 3.1
showing Edep edges in red and Eudp edges in blue.

5.2 Class design

As already mentioned at the end of section 4.3, the necessary prioritization of the motion
cycle over the cognition cycle requires to run two instances of Taskflow each having a
separate pool of threads inside a single cycle.

Therefore, the class design of the framework was changed and is shown in figure 5.2.
It consists of the three main threads called Motion, Cognition, and Debug that are imple-
mented in individual classes. While Motion and Cognition execute the processing cycles
whenever new data arrives using the ModuleManager class, the Debug thread mainly
handles the message transfer of debug data from the Motion and Cognition cycles via
network to a connected computer. Before the changes, the Motion and Cognition classes
inherited directly from the Thread class. The Thread class contains necessary objects
that are needed for the execution like the Blackboard and objects for infrastructure and
debugging explained in sections 5.3 and 5.4. The new design introduces an intermediate
class SuperThread between Cognition/Motion and Thread that extends the features of the
Thread class to contain multiple instances of the SubThread class. The SubThread class
is instantiated by an initial Taskflow task and then passed to the SuperThread object.

We choose this design for the following reasons:

• The most important and central data structures of the framework, for example, the
blackboard and other debugging objects contained in the Thread class, are also ac-
cessible via thread local global pointers. These pointers are initialized by the Thread
constructor after the object creation. They allow an easy access to debugging and
configuration features regardless of the position in code. To keep the functionality
the same, each new thread has to instantiate the Thread class first, which is achieved
by inheriting SubThread from Thread.

• While some data structures, for example, the blackboard, are shared between differ-
ent threads of a cycle, others, for example, the message queues for debugging, are

30 CHAPTER 5. DESIGN AND IMPLEMENTATION

1
Thread

0...*

Blackboard

Representation SpeedRequest

BallPercept

1

Cognition

1

Motion

Debug

1...4

SubThread
1...4

SuperThread

1...*

1

ModuleManager

Module BallDetector

Behavior

...

...

Taskflow

1

Figure 5.2: Simplified class diagram showing the relationship between representations, modules,
and threads.

not. The SubThread and SuperThread classes take care of the required communica-
tion modifications in contrast to the traditional Thread class. In short, this design
ensures that the SubThread’s Blackboard instances are equal to the SuperThread
Blackboard instance and the SuperThreads collect and distribute debug messages to
and from the SubThread instances. The details on this issue are explained in section
5.3.

Using this design, the data processing loop works as follows:

1. The framework creates 3 threads and instantiates the classes Motion, Cognition, and
Debug in each one.

2. The Motion and Cognition constructors instantiate the ModuleManager.

3. Each ModuleManager reads its configuration file containing the enabled modules
and representations and calculates the task graph according to section 5.1.

4. The Cognition thread waits for new image data from the cameras and the Motion
thread waits for a sensor update from the NAO body.

5. As soon as new data is available, the ModuleManager starts the cycle. If the
thread pool is currently empty which is the case during framework start up, the

5.3. COMMUNICATION 31

ModuleManager makes Taskflow to start new threads and instantiates the Sub-
Thread classes. Once that is done, the previously generated task graph is passed to
Taskflow and executed.

6. During the execution of the cycle, the ModuleManager blocks the SuperThread and
waits for completion.

7. The SuperThreads forward messages that have to be exchanged with other threads,
which is explained hereafter in detail.

8. The Motion thread sends generated data to the actuators and the Cognition thread
requests a new camera image.

9. If the module configuration was changed via debug command, the execution contin-
ues at step 3, otherwise, the execution continues at step 4 until the framework is
stopped.

This design ensures that all necessary data structures for the module execution are
still available and that the modules can access them in the same way as before.

5.3 Communication

In the past, the communication between different threads was realized via message queues.
The message queues store and forward messages asynchronously and ensure data consis-
tency without locks. They are used in many places of the framework and play a major
role in the transfer of representations between Motion and Cognition and for debugging
as already outlined in section 3.1. However, because of the needed copy operations, they
should be used for small data only and cannot be used efficiently to communicate between
sub threads that, for example, need to share image data as well.

To overcome this limitation, we changed the communication design. The new approach
is displayed in figure 5.3. It shows 4 sub threads CT1, CT2, CT3, and CT4 for the
super cognition thread and 2 sub threads MT1 and MT2 for the super motion thread
as well as another thread for debug communication to the PC. The two blackboards
containing all representations is used as shared memory for all threads within the motion
and cognition cycles and is shown as gray ellipses. This allows multiple threads to operate
on representations simultaneously while the task graph described in section 5.1 ensures
data consistency. The task graph makes sure that the update method of a module that
provides a representation executes before any other modules that require the same one.
This leads to a memory access from multiple readers but only one writer that can be
performed safely without data races.

Additionally, the different message queues are displayed as well. Representations that
are shared between all 5 cognition and 3 motion threads are exchanged at the end of each

32 CHAPTER 5. DESIGN AND IMPLEMENTATION

Motion

Cognition Debug

CT1

CT2

CT3
CT4

MT1 MT2

Camera

NaoBody

PC

Figure 5.3: Communication between the Cognition, Motion, and Debug threads shown as yellow,
red, and blue circles, respectively. Message queues are shown as arrows and shared memory regions
are visualized as gray ellipses.

cycle by the two super threads via the message queue displayed as black arrows connecting
them.

However, the representation transfer is not the only required communication. Debug-
ging features also play an important role in the framework. Therefore, the user is able
to send and receive debug messages using its PC that may get processed or generated by
modules during runtime. The messages are used to display, visualize, or modify values
of modules and representations and are very helpful to investigate the internal state of
the robot for debugging. These messages are passed via message queues that are shown
as blue arrows. The addition of sub threads also requires the addition of a new message
queue for each sub thread that communicates with its super thread. This has the rea-
son that multiple threads cannot access the same queue concurrently. Therefore, the sub
threads first send their messages to the super threads which collect all received messages
and forward them to the debug thread and vice versa. Since debug messages are only used
during the development and not during actual games, the additional overhead is negligible
and does not affect the performance during the game.

5.4. DEBUG CLASSES 33

5.4 Debug classes

Besides the already mentioned debug messages, the framework also uses some debug classes
that were used exclusively in each cycle to prepare and store data needed for remote
debugging. This includes, for example:

• The TimingManager keeps track of the execution time of each module.

• The DrawingManager provides an interface for modules to draw debug information
into, for example, camera images.

• The DebugRequestTable allows to execute code segments inside modules via com-
mand.

• The DebugDataTable stores arbitrary data that may be provided via commands by
the user and can be used by modules.

The instances of these classes were stored in the Thread object and used during the
execution of each module. When using multiple threads that access these objects concur-
rently, it could lead to data race conditions due to the internal use of non-thread safe data
structures that may result in unspecified behavior. To overcome this limitation, three
different solutions were individually found:

• Read-only access in sub threads for objects that are only modified by the super thread
before or after the execution of each cycle, for example, the DebugDataTable. During
the module execution, the objects are read-only and thus thread safe. This way, the
same instance can be shared between the sub threads.

• Separate instances for objects that are modified during the execution of individual
modules but are easy to duplicate, for example, the DebugRequestTable. The sub
threads operate on their own instances and the super threads merge the objects at
the end of each cycle.

• Shared locks for objects that are modified during the execution of individual modules
but would have to be adapted for duplication beforehand, for example, the Timing-
Manager and DrawingManager. They cannot be merged easily without changing
the implementation details, which has not been covered yet. Shared locks are intro-
duced as a temporary workaround until a better implementation is developed. Since
the locks are mainly necessary for initialization purposes, the performance impact
should be negligible and is covered by the evaluation in chapter 6.

34 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.5 Additional features

In addition to the main functionalities described before, we introduced a few more opti-
mizations and additional features to the framework.

Subflows As already mentioned in section 4.3, Taskflow also supports the scheduling of
dynamic tasks that are generated during runtime. Therefore, a new macro HAS_SUB-
FLOW, which can be used in the module definition presented in section 3.1, was intro-
duced. Similar to the PROVIDES(...) macro, it forces the programmer to implement an
update method. Instead of a reference to a representation that has to be filled, a Subflow
object is passed. The Subflow object makes the Taskflow API directly available and allows
the generation of sub task graphs that are treated like single tasks. This method is called
before any other regular update method of the module and it allows to parallelize program
code inside modules easily without, for example, spawning additional threads manually.

1 void YoloRobotDetector : : update (t f : : Subflow& subf low)
2 {
3 subf low . emplace ([=] ()
4 {
5 execute (t rue) ;
6 }) . name(" YoloUpper [YoloRobotDetector] ") ;
7

8 subf low . emplace ([=] ()
9 {

10 execute (f a l s e) ;
11 }) . name(" YoloLower [YoloRobotDetector] ") ;
12 }

Listing 5.1: YoloRobotDetector subflow generation.

This mechanism is implemented exemplary for the YoloRobotDetector in listing 5.1,
which executes a neural network for image segmentation. Using this feature, both images
can be processed concurrently in the same module. Lines 5 and 10 execute the inference of
the neural network for the upper and lower camera using lambda functions that are added
as tasks in lines 3 and 8. Once both functions have been executed, the regular update
methods of the module provide the representations using the results of the inference done
before.

Concurrent updates The task graph generation described in section 5.1, assumed
that update methods of the same module cannot be executed concurrently. This is true
for many modules but not for all. For the case that an update method can be exe-
cuted independently from the others, we introduced the new macro PROVIDES_CON-

5.5. ADDITIONAL FEATURES 35

CURRENT(...). The functionality is similar to the regular PROVIDES(...) macro,
however, this update method is not considered when generating the strict total order
of representation updates <m for this module. That allows the concurrent execution of
update methods if they do not operate on shared data or if they access it thread safely.

Figure 5.4: Execution trace of 3 motion threads (1 super thread and 2 sub threads) and 5
cognition threads (1 super thread and 4 sub threads).

Task trace generation One of the main advantages of Taskflow outlined in section 4.3,
is the ability to observe and record the execution order of tasks in real-time, which can
be interactively viewed via Google Chrome’s tracing feature1 and is shown in figure 5.4.
The image shows the exact scheduling of individual tasks to a number of threads that was
recorded during the execution of a single cycle. However, we overhauled the implementa-
tion by Taskflow completely during the framework integration in order to implement the
following features:

• Parallel observation of multiple task graphs. Because the motion and cognition
execution runs concurrently, it is helpful to see the timeline of both cycles.

• Observation of the super thread that is run outside of the task graph.

• Additional time measurements to monitor, for example, the message queue commu-
nication that happens before and after the execution of each cycle.

This feature is very helpful during the analysis of possible performance bottlenecks and
it allows deep insights into the framework that were not visible before. The recording can
be started and stopped at any time in real-time on the robot using two debug commands
and the measurements get transferred into a file of the connected computer automatically.
This file can be opened directly using the Google Chrome tracing tool. That allows to
have a quick glance into the module scheduling for developers, if, for example, the cycle
execution time suddenly takes longer than they expect.

1https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

36 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.6 Summary

This chapter first explained the transformation from a module-representation graph to a
task graph. Therefore, we considered the individual update methods as tasks and trans-
formed the dependencies based on the module requirements to task dependencies. After
that, we presented the required changes to the class design of the framework and high-
lighted the occurred challenges concerning the thread communication. Furthermore, we
explained some required changes to the debug classes that were not thread safe yet and
presented the addition of useful features to improve the degree of concurrency and ability
to debug.

We evaluate the impact of these changes on the overall performance of the framework
in the following chapter.

Chapter 6

Evaluation

In this chapter, we evaluate the impact of the changes explained earlier and measure
the speed up gained by the parallelization. Therefore, we examine the execution time of
the motion and cognition cycle under different scenarios and analyze the strengths and
weaknesses of the found solution.

6.1 Metrics

The main goal when evaluating the performance of the framework is to meet the deadlines
of the motion and cognition cycles. This means that for cognition, the execution time
after receiving new image data must be below 33 ms when targeting a frame rate of 30 Hz
and for motion, the execution time after receiving new sensor data must be below 12 ms
when targeting a frame rate of 83 Hz.

However, for both cycles, new image and sensor data are triple buffered. Whenever a
cycle needs more execution time than usual, the framework caches new data that arrives
during the ongoing execution and keeps it for the following cycle. That avoids discarding
data and reduces the consequences of missed deadlines. Nevertheless, as already outlined
in section 2.2, the impact for motion is higher than for cognition. If the motion cycle
misses a deadline for a new actuator request, the robot may stutter while a small delay in
cognition processing may not even be noticeable. That gives the monitoring of deadlines a
higher priority for motion than for cognition. However, focusing only on missed deadlines is
insufficient when comparing the performance of different configurations or implementations
that both finish within their deadlines. Furthermore, when monitoring the performance
of the processing cycles, we need to consider that these may also be affected slightly by
lower priority logging and debugging threads of the framework as well as other software
by the manufacturer running on the NAO. The latter includes kernel drivers and the high
priority daemons necessary for hardware communication and message transfer, which are
part of the NAOqi control software, and further Linux typical logging, audio, and network

37

38 CHAPTER 6. EVALUATION

services. When the framework is stopped and the robot idles, these processes require
about 3 % to 5 % CPU usage on each core.

Consequently, aside counting the number of missed frames and printing a warning
whenever the buffer is full and input data is discarded, we monitor the timestamps of
each cycle start and finish and consider the difference as the execution time. For the time
measurements, we use the std :: chrono::steady_clock class from the C++ Standard Library.
During the experiments outlined in the following sections, we record all execution times of
each cognition and motion cycle over a longer period of time and calculate the following
metrics on them:

• The average execution time is the arithmetic mean of the measured execution times
during the experiment. We use it to evaluate the default case under the condition
that the variations are small enough.

• The 0.01 and 0.99 percentiles indicate the distribution of the measured execution
times. The execution time must be as stable as possible to utilize all resources
of the processor while reducing the chance to exceed the deadlines too frequently.
The difference between both percentiles contains 98 % of all values and indicates the
stability of the execution time. Bad scheduling that happens too frequently causes
a wider distribution, which increases this difference.

• The maximum execution time is the longest execution time during the experiment.
It is used to estimate the worst case execution time, which must not exceed the
deadline for motion and is accepted to exceed the deadline for cognition when it
happens rarely. However, because of other processes and interrupt handlers that are
running on the same operating system, some occasional high execution times happen
from time to time that are out of control of the Nao Devils framework. Hence, the
0.99 percentile is more meaningful when evaluating the worst case execution time
that is under control of the framework.

During the evaluation of the motion cycle’s execution times, we discovered that these
vary systematically and independently from external influences. This is because the exe-
cution time for motion depends on the current step phase. In the Nao Devils framework,
one foot step consists of several frames that do the required motions for lifting, moving,
and setting down each foot. Between two steps, the walking engine recalculates its pre-
view, which contains the following three planned steps that are based on the sensor data
gathered before. This recalculation happens periodically in a single frame and is quite
CPU-intensive, which increases the execution time significantly. Figure 6.1(a) shows the
execution times of a 10 s recording and visualizes the spikes. However, the occurrence of
these spikes may pause when the robot stops walking shortly to prevent a fall down or
during the performance of kicks, which is visible around frame 550. On the one hand, these

6.2. SETUP 39

0 200 400 600 800
Frame

0.0

0.5

1.0

1.5
E
xe
cu

ti
on

ti
m
e
(m

s)

(a) Execution time of each frame within a 10 s time
span.

1.0 1.2 1.4 1.6
Execution time (ms)

0.00

0.05

0.10

0.15

0.20

Fr
eq
ue

nc
y

(b) Histogram of execution times using 50 bins.

Figure 6.1: Fluctuations in motion execution time.

spikes increase the difference between the 0.01 and 0.99 percentile a lot while not being
caused by scheduling decisions or parallelization, which we want to measure primarily us-
ing this metric. On the other hand, the number of preview frames depends on the number
of kicks. The more often the robot kicks the ball or prevents a fall down, the lesser the
robot recalculates its preview. That makes all metrics dependent on the actual number of
preview frames. To eliminate this dependency, we separate both cases and evaluate them
independently. The average execution time of 1.628 ms of preview frames is around 69 %
higher than non-preview frames executing 0.9646 ms on average. Figure 6.1(b) shows a
histogram that plots the frequency of different execution times grouped into 50 bins. It
shows that there are no frames having an execution time around 1.3 ms. Consequently, we
separate the motion times right in the middle between the two local maxima into preview
and non-preview frames. That allows a more precise evaluation of metric changes and an
independent evaluation of both cases.

6.2 Setup

The setup used for the evaluation must fulfill three requirements:

1. The framework’s performance must be analyzed on the robot itself and cannot be
simulated. The execution time of a program depends on the used CPU and oper-
ating system. Since the NAO runs an Intel Atom CPU, which we introduced in
section 1.2 and which is uncommon for desktop computers, the same measurements
cannot be produced on a different system. Furthermore, when using the simulator

40 CHAPTER 6. EVALUATION

explained in section 3.1, the framework replaces hardware dependent modules for
the communication with the cameras, actuators, and sensors by others that have
different performance characteristics.

2. The setup must reflect a typical game situation. For example, the execution time of
the ball detection depends on the number of ball hypotheses, which are generated
heuristically during the image preprocessing. For each hypothesis, a small neural
network decides whether it is a ball or not. Since the number of hypotheses varies,
the execution time for the ball detection varies as well. Especially robots generate
many false ball hypothesis because of their similar black-and-white look and have
a high impact on the execution time of the whole cognition cycle. A realistic game
scenario helps to keep the execution time in a realistic range.

3. The setup must be reproducible. Since we compare the performance of the framework
before and after the added parallelization as well as we test different configurations,
every run of the same configuration must produce the same results. This ensures
that differences in measurements, for example, of the average execution time, are
due to the changed configuration and not caused by other external influences.

Consequently, two setups are possibly suitable:
First, the robot replays a log file recorded previously. Since the execution time depends

on image and sensor data, it is theoretically possible to replay some data that we captured
earlier. This way, the processing cycle receives the recorded data and ignores the real data
from the robot. That makes the robot operate without perception of its real environment.
This has the advantage of being very easy to reproduce and does not require a field setup
with other robots and a ball. However, while sounding promising, this setup has a few
issues.

Especially the loading and decompression of image data needs additional execution
time and memory. On the one hand, if we decide to load the image data before the
execution of each cycle, it will affect the measured execution time. On the other hand, if
we decide to load all image data once during the framework start, the number of images will
be limited by the available memory. Furthermore, we are unable to record log files during
games that contain every image in its full size. Either, we record at a greatly reduced
frame rate or resolution for debugging purposes or we record short image sequences of two
seconds periodically for the training of new neural networks. The recording of complete
games during the normal execution of the framework exceeds the available computing
power or storage and is currently not possible.

Second, we set up a typical game situation, start the robot from the same position
at the field border each time, and let it move the ball to the opponent’s goal as shown
in figure 6.2, which takes around 30 s. This has the advantage that there is no need to

6.2. SETUP 41

Figure 6.2: Evaluation setup with a NAO walking along the orange dashed line.

modify anything on the robot for the evaluation and it can operate as normal as during
a game. In the following sections, we analyze the reproducibility of the explained live
evaluation setup, we show the difference to recorded log data, and we point out that the
live evaluation results in more realistic execution times.

For the following preliminary evaluations, we use the original framework without any
multi-core changes.

6.2.1 Reference measurements

Metric Minimum Average Maximum
p=0.01 12.34 ms 12.93 ms 14.09 ms
avg 15.88 ms 16.09 ms 16.18 ms

p=0.99 18.85 ms 19.64 ms 21.02 ms
max 20.03 ms 22.25 ms 24.97 ms

Table 6.1: Reference measurements of cognition metrics during 10 test passes.

Non-preview Preview
Metric Minimum Average Maximum Minimum Average Maximum
p=0.01 0.8950 ms 0.8997 ms 0.9040 ms 1.494 ms 1.503 ms 1.520 ms
avg 0.9617 ms 0.9646 ms 0.9668 ms 1.623 ms 1.628 ms 1.633 ms

p=0.99 1.064 ms 1.080 ms 1.101 ms 1.784 ms 1.835 ms 1.924 ms
max 1.113 ms 1.182 ms 1.265 ms 1.802 ms 1.887 ms 1.997 ms

Table 6.2: Reference measurements of motion metrics during 10 test passes.

42 CHAPTER 6. EVALUATION

In order to be able to make precise statements about changes in metrics that are
caused by the introduced multi-core implementation, we first analyze the performance of
the old framework and investigate the reproducibility of the presented evaluation setup.
Therefore, we use the original Nao Devils framework without any multi-core improvements,
except for a bugfix concerning the cognition real-time priority that we discuss in section
6.2.3. We use the same framework configuration as for official games. Moreover, in the
following evaluations, we use the results as reference measurements whenever we compare
the outcome of an experiment to the previous, non-parallelized framework. We repeat the
same setup 10 times, calculate the metrics for each pass, and show the average, minimum,
and maximum values of these during all 10 test passes in tables 6.1 and 6.2 for cognition
and motion, respectively. Since the minimum and maximum values deviate from the
average value by a maximum of 9 % for the percentiles and by a maximum of 1.3 % for the
average metric, we will refrain from testing the same configuration several times in the
following experiments and consider the results as reproducible. Consequently, we interpret
measurements outside of these recorded ranges as caused by framework improvements and
configuration changes that we investigate in detail hereafter.

6.2.2 Comparison between log and live data

Log data
p=0.01 15.04 ms (+16.32 %)
avg 16.05 ms (−0.2681 %)

p=0.99 17.77 ms (−9.550 %)
max 18.15 ms (−18.42 %)

98% range 2.722 ms (−59.43 %)

Table 6.3: Cognition metrics using log data and their deviations from the reference measurements
using live data.

We compare the execution times using a two seconds log file sequence from RoboCup
2019 in Sydney with the live scenario on the field. The log file plays in a continuous loop
during the evaluation while the framework’s actuator output is ignored and the robot’s
motors are turned off. The motion execution times are unaffected by this change, which is
reasonable because they are independent from any sensor input and mostly use algorithms
with constant runtime. However, the number of preview frames varies because of missing
stumbles, but these are already separated using the data split explained in section 6.1
and do not change the results. For cognition, we show the calculated metrics based on
the recorded execution times in table 6.3. The average execution time is very close to the
reference measurements using live data. Nevertheless, the fluctuations in execution time
for cognition using log data are much less than on the field. Using log data, 98 % of the

6.2. SETUP 43

0 200 400 600 800
Frame

0

5

10

15

20
E
xe
cu
ti
on

ti
m
e
(m

s)

(a) Log data.

0 200 400 600 800
Frame

0

5

10

15

20

E
xe
cu
ti
on

ti
m
e
(m

s)

(b) Live data.

Figure 6.3: Comparison between cognition execution times using recorded log data and live data
on the field.

cognition execution times are distributed over a 2.722 ms range. In contrast to that, the
execution times using live data are distributed over a 6.709 ms range. These fluctuations
are also visible when observing the raw execution times of each frame, which we show in
figure 6.3. The execution times using the 2 seconds log file follow a very repetitive pattern.
In contrast, the execution times during the live test vary much more and cover extreme
values that are not reached using log data. These differences are of particular importance
when considering the performance of the implemented changes and investigating the edge
cases.

Consequently, we decided to use the more realistic field evaluation for the following
investigations.

6.2.3 Real-time priority

Non-real-time
p=0.01 13.34 ms (+3.157 %)
avg 17.46 ms (+8.506 %)

p=0.99 22.80 ms (+16.10 %)
max 26.95 ms (+21.13 %)

98% range 9.463 ms (+41.06 %)

Table 6.4: Cognition metrics before setting fixed real-time priority and their deviations from the
reference measurements.

44 CHAPTER 6. EVALUATION

During the evaluation, we discovered a misconfiguration of the real-time priorities used
in the Nao Devils framework. Usually, the priorities of the different processes running on
the operating system are ordered according to the data flow of actuator and sensor data.
Processes provided by the manufacturer that communicate directly with the hardware
have the highest priority in order to receive and send motor and sensor updates in time.
After that, a small program with slightly lower priority follows that connects to the API
provided by the manufacturer and communicates with the Nao Devils framework. The
framework’s motion thread again uses an even lower priority while setting the cognition
thread to the lowest real-time priority. The debug thread and all other processes are
scheduled by the standard time-sharing scheduler. However, for the cognition thread, the
real-time priority was only set while waiting on new image data from the cameras. As
soon as these were available, the priority was set back to Linux’ standard time-sharing
scheduler. We removed these priority changes and set it to a fixed real-time priority
instead. For motion, the impact of this change is marginal, which is expected because
motion is always prioritized over cognition. In contrast, for cognition, this makes a major
difference. We show the impact of these changes in table 6.4. The average cognition
execution time is 8.5 % higher and the 0.99 percentile is even 16.1 % higher without a
fixed real-time priority. Consequently, keeping the real-time priority permanently for the
cognition thread reduces the average execution time significantly and decreases the 98 %
value range from 9.163 ms down to 6.708 ms.

This behavior is comprehensible when examining the Completely Fair Scheduler (CFS),
which Linux uses for non-real-time tasks by default. The CFS tries to assign each running
process the same amount of computing time. Therefore, CFS tracks the elapsed runtime
of each process and always schedules the process with the minimal execution time so
far during each timer interrupt [16]. However, this strategy disadvantages the cognition
part of the framework and reduces the responsiveness. Since cognition utilizes most of
the resources of the whole system, it is the first process that is preempted whenever
one of the other processes running at the operating system is ready to execute. That
introduces overhead for the process switches and increases the cognition execution time
non-deterministically.

Hence, since all other processes running on the NAO are less important and time-
critical than the cognition processing, this is considered a bug in the current framework.
Consequently, we prioritized cognition over the standard Linux processes using the lowest
real-time priority for all evaluations.

6.3 Scenarios

In this section, we evaluate different configurations for the number of threads for cognition
and motion, for the order of update methods mentioned in section 5.1, and for different

6.3. SCENARIOS 45

thread to CPU core assignments. Furthermore, we stress test the implementation by
enabling additional framework modules that utilize more CPU resources.

In the following, whenever we refer to the number of motion or cognition threads, we
actually refer to the number of working sub threads from section 5.3 that execute the
framework modules and assume an implicit additional super thread being present in any
case that blocks during the module execution.

6.3.1 Thread count

In section 4.3, we decided to use two separate thread pools to prioritize the motion over
the cognition threads. However, using this approach, we must decide how many threads
are spawned for each cycle in order to use all CPU resources while avoiding unnecessary
context switches when more threads are ready to run than CPU cores are available. There-
fore, we do 16 tests with 1 to 4 cognition and 1 to 4 motions threads and investigate the
impact on the execution times.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Execution time (ms)

C1 M1
C2 M1
C3 M1
C4 M1
C1 M2
C2 M2
C3 M2
C4 M2
C1 M3
C2 M3
C3 M3
C4 M3
C1 M4
C2 M4
C3 M4
C4 M4

Figure 6.4: Average execution times and the 0.01 and 0.99 percentiles of the motion cycle when
using different numbers of threads for motion and cognition.

First, we analyze the average execution time of the motion thread and show the average
execution times and the percentiles in figure 6.4. The measurements around 1 ms are non-
preview frames and the measurements around 1.6 ms are preview frames. The number of
cognition threads does not have any measurable, significant impact on the execution time
of the motion cycle because of its higher priority. When considering the number of motion

46 CHAPTER 6. EVALUATION

threads, the use of only one thread is clearly the slowest option consuming more than
1 ms of execution time for non-preview frames and more than 1.7 ms of execution time for
preview frames on average. The execution times for 2 to 4 threads are very similar and
only increase slightly for the preview frames using 3 or 4 threads. We expected this result
because most motion modules are very short and do not allow massive parallelization
because of their dependencies.

Figure 6.5: Execution trace of 4 motion threads for a non-preview frame.

Figure 6.6: Execution trace of 4 motion threads for a preview frame.

Figure 6.5 shows the execution trace using 4 threads and illustrates the problem.
Especially thread 3 and 4 do not have enough work to do and the execution time is mostly
limited by modules that require a sequential execution. During a preview frame, which we
show in figure 6.6, this effect becomes even more visible because the preview calculation
is performed within a single module providing the FootSteps and all other threads must
wait for its termination. Furthermore, Taskflow follows a hybrid approach between busy-
waiting and blocking whenever a thread does not have any tasks to execute. First, the
idle thread tries to steal tasks from other task queues up to 100 times. If this does not
succeed, it will block the execution. That increases the execution times for non-preview
frames even further using 3 or more threads. Whenever a thread blocks, the rescheduling
requires a small amount of time whenever there is new work to do and extends the total
execution time. For example, figure 6.6 shows that the module execution in threads 1
and 2 is slightly delayed after providing FootSteps, although they only depend on the
FootSteps representation.

Subsequent, we decide to use 2 threads for motion, which offers the best performance
during the experiment. Furthermore, we do not expect that the motion processing requires
much more computing power in the near future and we can use the available resources for
cognition more effectively.

6.3. SCENARIOS 47

10 12 14 16 18 20 22
Execution time (ms)

C1 M1
C1 M2
C1 M3
C1 M4
C2 M1
C2 M2
C2 M3
C2 M4
C3 M1
C3 M2
C3 M3
C3 M4
C4 M1
C4 M2
C4 M3
C4 M4

Figure 6.7: Average execution times and the 0.01 and 0.99 percentiles of the cognition cycle when
using different numbers of threads for motion and cognition.

Figure 6.8: Execution trace of 4 cognition threads.

For the cognition execution times, we show the averages and percentiles in figure 6.7.
Here, the impact of different motion thread counts is more visible. Since the motion cycle
preempts the cognition cycle whenever new data is available, the usage of more motion
threads adds more overhead for context switching and increases the cognition execution
time slightly. From the cognition perspective, one motion thread is ideal, but since this
choice increases the execution time for motion more than it decreases the execution time
for cognition, using two motion threads is the best compromise.

When considering the number of cognition threads, 3 or 4 threads are the best choice
offering minimal execution time. However, when using 4 threads, the same effect as men-
tioned in the motion evaluation becomes important. Figure 6.8 shows the execution trace
using 4 cognition threads and illustrates only 3 major modules running concurrently, while
many threads idle most of the time. Here, Taskflow blocks idle threads after some time
as well, which introduces a small overhead whenever they must be rescheduled. Conse-
quently, 3 threads are able to process the workload in the same time while reducing these

48 CHAPTER 6. EVALUATION

overheads whenever no modules are ready to execute. That reduces the total execution
time compared to 4 threads. Nevertheless, we decide to use 4 cognition threads for the
following reasons:

1. The execution time difference between 3 and 4 cognition threads is small compared
to the total runtime. When using it in combination with 2 motion threads, the
configuration of 3 cognition threads reduces the average execution time from 10.56 ms
to 10.06 ms. Since both times are much smaller than the deadline of 33.33 ms to reach
the frame rate of 30 Hz, this is not of particular importance.

2. The Nao Devils team plans to add more complex modules in the near future that will
use the available resources, for example, for improved image and audio processing.
We evaluate the impact of some more demanding modules on the execution time in
section 6.3.3 to investigate the performance under heavier load.

3. Other developers working on the framework do not have the knowledge when to
switch between 3 or 4 cognition threads. Since a requirement for the implemented
solution is the avoidance of configuration parameters, using 4 threads right from the
beginning makes the framework ready for the future without manual adjustments.

Consequently, we decide to use 2 motion and 4 cognition threads as the best choice for
the following evaluations.

6.3.2 Update order

In section 5.1, we mentioned the total order relation <m that defines the sequential order
of update methods providing different representations within the same module to avoid
race conditions on shared data. We argued to execute update methods first that provide
representations having a high number of dependent modules to increase the number of
ready modules as early as possible and thereby improve parallelism. Therefore, for each
update method of a single module, we first calculate the number of all subsequent nodes
and then add additional dependencies into the task graph to execute these methods in
descending order.

This evaluation compares this choice with two alternative orderings. First, we use the
unmodified order of the module manager’s configuration file that is sorted alphabetically
according to the names of the representations, which is the default case of the internal
data structure when no explicit sorting is performed. Second, we reverse the explained
order by sorting the update methods in ascending order of dependents. We consider this
as the worst case because it reduces the number of ready tasks at the beginning of the
cycle and delays the efficient parallel execution to the end of it.

We evaluate the three settings and show the results in figure 6.9. For cognition, the
differences in the average execution times are very small compared to the total execution

6.3. SCENARIOS 49

0.75 1.00 1.25 1.50 1.75
Execution time (ms)

Inc.

Config.

Dec.

(a) Motion cycle.

10 12 14
Execution time (ms)

Inc.

Config.

Dec.

(b) Cognition cycle.

Figure 6.9: Average execution times and the 0.01 and 0.99 percentiles when ordering update
methods by their increasing or decreasing number of dependents or by configuration file.

Figure 6.10: Execution trace of a non-preview motion frame with update methods ordered by
their increasing number of dependents.

time. We measure the biggest difference of 0.1255 ms between the decreasing dependents
ordering and the configuration file ordering. Furthermore, this difference is much smaller
than the value range of the average execution time during the reproducibility tests in
section 6.2.1. Consequently, this is not considered significant. For motion, the results are
different. The differences between the decreasing and increasing dependents ordering are
54.4 µs for non-preview frames and 34.1 µs for preview frames in favor for the decreasing
ordering, which is much more significant when considering the value range of the aver-
age execution time of the motion cycle during the reproducibility tests. This observation
is reasonable, when considering the execution trace of a single motion cycle in compari-
son. Using the increasing dependents ordering in figure 6.10, the framework provides the
FrameInfo representation, which is a major representation of the framework and required
by many modules, only after more than 200 µs. That leaves the second thread idle between
100 µs and 200 µs, which reduces the parallelism and increases the total execution time.

Figure 6.11: Execution trace of a non-preview motion frame with update methods ordered by
their decreasing number of dependents.

50 CHAPTER 6. EVALUATION

In contrast, when using the decreasing dependents ordering showed in figure 6.11, the
framework provides the FrameInfo representation much earlier and utilizes both threads
more efficiently.

The measurements show that at least for motion, the total execution time depends on
the chosen update order. However, for cognition, it is theoretically possible as well. The
effect is less visible in this case because the total execution time is more dependent on the
execution of a few CPU-intensive modules that start early enough in both configurations
to be unaffected by the change.

Nevertheless, it is worth noting that the dependent-based ordering is a heuristic ap-
proach to improve the resource utilization, which is easy to implement but not optimal. It
is based on the assumption that all modules roughly take the same execution time, which
is obviously not the case in reality. A better solution is to prefer update methods that
need much time to execute and to reduce the idle time of all threads. However, we do
not have knowledge about the execution time of each module in advance and the optimal
order may be hard to find. Further research on this problem may be the subject of an
analysis at a later time.

In our case, the decreasing dependent ordering performed quite well and we did not
encounter any high execution times being caused by an unsuitable execution order of
update methods during all of our tests.

6.3.3 Stress test

The Nao Devils team ported the framework to the NAO version 6 just recently and all
modules have been designed not to exceed the maximum execution time on a single core
in the past. Consequently, it is currently not capable to fully utilize all available CPU
resources until the team develops more complex modules in the future. To simulate more
load on the entire system, we enable the JPEG image conversion for the upper and lower
camera, which allows to transfer the image data to a connected computer in real-time
over WLAN, and we enable the inference of an experimental neural network providing
additional ball hypotheses. In sum, this adds about 20 ms of additional execution time.

Since this change only affects the cognition execution time, we ignore the motion data
for this experiment and compare the performance of the old framework with the multi-
thread implementation using different cognition thread counts from 1 to 4. We show the
execution times in figure 6.12. The average execution times for the reference test and
one cognition thread are over 33 ms and cause a high number of missed deadlines. The
cognition cycle missed the deadlines in 7.493 % and 10.24 % of all frames, respectively.
That makes this configuration unusable during a game. The usage of one cognition thread
turns out to perform even worse compared to the reference test because of the additional
thread communication and dynamic task execution overhead. However, when increasing

6.3. SCENARIOS 51

15 20 25 30 35
Execution time (ms)

ref.

C1

C2

C3

C4

Figure 6.12: Average execution times and the 0.01 and 0.99 percentiles of the cognition cycle
when using different numbers of cognition threads compared to the reference measurements of the
non-multi-threaded framework.

the thread count to two or more, the average execution times decrease rapidly offering
an improvement of 60.58 % when comparing the average execution time of one cognition
thread to three cognition threads.

Figure 6.13: Execution trace of a cognition frame with enabled JPEG conversion and generation
of additional ball hypotheses using 4 cognition threads.

Nevertheless, the four thread configuration still performs slightly worse compared to
three. Figure 6.13 shows the execution trace using 4 cognition threads. Even with the
additional CPU-intensive modules, four threads do not have enough concurrent work to
do to fully utilize all cores. In contrast to section 6.3.1, the reason for that is not only the
introduced overhead because of blocking tasks but it indicates another problem, which is
the scheduling of tasks. The total execution time of the shown execution trace can be
decreased by swapping YoloUpper with CLIPPointsPercept and executing the first one in
thread 2 and the second one in thread 1. This closes the gap in threads 1, 3, and 4 at the
time around 11 ms and reduces the overall execution time by about 1 ms. The cause of this
execution order is the point in time when the dependencies for the execution of YoloUpper
and CLIPPointsPercepts are fulfilled. Since YoloUpper and YoloLower are ready to start
slightly earlier than CLIPPointsPercept, the execution of YoloLower starts first. Since
thread 1 is busy at this time, the execution of YoloUpper postpones. Once thread 1
is free, the execution of CLIPPointsPercepts starts because it is a direct successor of a
previous representation in the same thread that is executed directly by the work-stealing

52 CHAPTER 6. EVALUATION

scheduler to improve data locality. Consequently, the execution of YoloUpper is delayed
until YoloLower finally finishes.

This scenario illustrates that the work-stealing scheduler used by Taskflow does not
guarantee a minimal execution time. However, for our use case, we did not observe any
major performance problems during the evaluations. Nevertheless, it becomes more im-
portant when the load rises and the number of long executing modules increases. To
reduce the chance of bad scheduling decisions, we encourage developers to write a higher
number of short modules instead of a single one that has a high execution time, which
also follows the general design concept of the framework architecture. Alternatively, they
can use the Subflow feature explained in section 5.5 to split the execution into smaller
pieces whenever possible. Nevertheless, if developers cannot avoid to add new long exe-
cuting tasks, they must verify the efficient scheduling and adjust the dependencies where
necessary, for example, using the provided debug tool for execution tracing. In the future,
further investigations may be needed to circumvent such situations.

However, a short test using another dummy module iterating for several milliseconds
within an empty for-loop performed significantly better using four threads than three.
Consequently, the final choice of four cognition threads is reasonable for the future when
enough parallel workload will be available.

6.3.4 CPU core pinning

During all evaluations so far, we did not assign each thread to a fixed physical CPU core
and trusted the Linux scheduler to take care of the distribution. However, it is possible
that the execution time reduces by pinning each thread to a specific core in order to
improve the CPU cache usage and reduce the overhead of possible thread migrations.

We evaluate this by comparing different thread to CPU core assignments. For each
cycle, motion and cognition, we either set each thread to a fixed physical core or use the
default dynamic assignment of the Linux process scheduler. Since we only use two threads
for motion, we make sure to use two cores that share a common L2 cache. Since the impact
on the execution time is very small, we set the robot to a fixed position on the field and
disable all movements. That reduces the runtime fluctuations because of varying image
data to a minimum. Furthermore, we also enable the JPEG image conversion and the
experimental neural network for additional ball hypotheses like in the previous experiment
to increase the load on the system, which makes the effect more visible. Since the 0.01 and
0.99 percentiles are unaffected by the changes and remain at the same positions relative to
the average execution times, we do not cover them at this point. Furthermore, we ignore
the motion preview frames for simplicity reasons because their execution times scaled
proportional to the non-preview frames during the experiment.

6.3. SCENARIOS 53

Config. Motion Cognition
C. dyn., M. dyn. 0.9045 ms 13.93 ms
C. dyn., M. fix. 0.8885 ms 14.17 ms
C. fix., M. dyn. 0.8989 ms 13.82 ms
C. fix., M. fix. 0.8868 ms 13.88 ms

Table 6.5: Average execution times of the non-preview motion and cognition cycle using either
fixed or dynamic thread to CPU core assignments.

Table 6.5 shows the average execution times using either a fixed or dynamic assignment
of CPU cores for each cycle. We repeated the experiment several times and the values
varied only slightly while the order kept the same each time.

We can only speculate about the reasons for the outcome of the experiments because
the effects depend on CPU caching and scheduling decisions of the operating system that
are hard to monitor.

When considering the motion cycle independently, the best choice is a fixed assignment
of both cycles resulting in a minimal motion execution time. That is reasonable because the
motion cycle benefits from a shared L2 cache that reduces access times to data. However,
for cognition, a dynamic assignment of the motion threads is slightly faster. That is
reasonable as well because whenever cognition currently uses at least one of the two CPU
physical cores that the motion cycle is assigned to statically while other cores may be
free, the prioritized motion cycle must preempt the cognition thread without necessity.
That increases the total cognition runtime. The third option, a dynamic assignment of
cognition and fixed assignment of motion threads raises the execution time for cognition
even over the Linux default setting using dynamic assignments for both cycles. Using this
configuration, the process scheduler must migrate running cognition threads to another
core whenever the prioritized motion threads start the execution on the pinned cores,
which introduces additional overhead.

When considering both cycles together, a fixed assignment of cognition and a dynamic
assignment of motion threads delivers the best results during this experiment and reduces
the execution times of the motion and cognition cycles compared to the default case by
0.6200 % and 0.7420 %, respectively.

However, since the benefit is very small and was not measurable during the regular
experiments using a walking robot, the differences are negligible. Furthermore, the eval-
uation only covered the execution times of the Nao Devils framework. Neither did we
measure the effects on other real-time processes, for example, for the communication with
the robot hardware that may be affected by the changes as well, nor did we measure
consequences for non-real-time tasks for debugging, logging, and other services.

54 CHAPTER 6. EVALUATION

Consequently, we decide not to use core pinning for the framework in order to keep the
flexibility of the Linux process scheduler and to avoid negative impacts on other processes
that we are not aware of.

6.3.5 Reference comparison

In this section, we compare the final implementation using the results from the previous
evaluation with the reference measurements from section 6.2.1. Therefore, we use the same
framework and module configuration as during an actual game. In summary,

• we use 4 cognition and 2 motion threads,

• we enable real-time scheduling for both threads and prioritize the motion over the
cognition cycle,

• we order the update methods of individual modules by their decreasing number of
dependents, and

• we do not use CPU core pinning.

Cognition
p=0.01 8.918 ms (−31.05 %)
avg 10.56 ms (−34.36 %)

p=0.99 13.65 ms (−30.53 %)
max 14.74 ms (−33.75 %)

98% range 4.728 ms (−29.52 %)

Table 6.6: Comparison of cognition metrics to reference measurements.

motion non-preview motion preview
p=0.01 0.8100 ms (−9.969 %) 1.425 ms (−5.171 %)
avg 0.8832 ms (−8.435 %) 1.566 ms (−3.777 %)

p=0.99 1.001 ms (−7.268 %) 1.795 ms (−2.178 %)
max 1.131 ms (−4.315 %) 1.809 ms (−4.134 %)

98% range 0.1915 ms (+6.211 %) 0.3693 ms (+11.39 %)

Table 6.7: Comparison of motion metrics to reference measurements.

We show the results in tables 6.6 and 6.7. For cognition, the average execution time
decreases by 34.36 % to 10.56 ms while the execution trace in figure 6.8 shows that the
framework does not even use utilize all four CPU cores simultaneously. Furthermore, the
98 % range of the execution times reduces significantly and results in much more stable

6.3. SCENARIOS 55

execution times. Additionally, both the 0.99 percentile and the maximum execution time
are below the cognition deadline of 33 ms and ensure a stable operation without any
deadline misses during our evaluation.

For motion, the average execution times for the non-preview and preview frames de-
crease by 8.435 % and 3.777 %, respectively. In this case, the improvement is less because
many modules execute sequentially and the communication overhead reduces the benefits
of two threads even further, which also increases the 98 % range slightly compared to the
reference measurements. However, this is negligible because both the 0.99 percentile and
the maximum execution time are significantly lower than the deadline of about 12 ms and
they are lower than during the reference tests.

56 CHAPTER 6. EVALUATION

Chapter 7

Conclusion and Outlook

The goal of this thesis was to improve the multi-core usage of the current Nao Devils
framework in order to exploit the potential of the upgraded CPU in the new NAO version
6. Therefore, we first analyzed the current framework architecture and showed possible
starting points to parallelize the existing code. We evaluated the parallel execution of in-
dependent modules as the best suitable solution and defined a list of requirements for the
new implementation. After that, we examined different approaches for parallel program-
ming and compared their advantages and disadvantages. Based on the results, we decided
to use Taskflow, which is a user-space library that allows to execute arbitrary tasks with
dependencies using multiple threads and showed to be applicable for our purpose. We
integrated the library into the framework and explained the details on that including the
generation of the task graph, the changes concerning the inter-thread communication, and
the required debug adjustments. From the perspective of other framework developers,
we focused on an easy-to-use and dynamic approach that transparently reduces the exe-
cution time with minimal configuration effort and minimal changes to the existing code.
Furthermore, using the execution trace feature, developers can easily monitor the module
scheduling in real-time and investigate the reason of possible performance issues. In the
past, the exact execution sequence of modules was unknown and hard to track without
further understanding of the framework.

Finally, we compared the performance of the improved framework to the old one.
Therefore, we created a realistic evaluation setup that allows to measure the performance
as reproducible as possible and tested different configurations in different scenarios. In
summary, we measured a reduction of the average execution time by 34 % for the cognition
cycle and by 3.8 % to 8.4 % for the motion cycle and confirmed the compliance with the
deadlines. Additionally, both cycles currently neither do exploit their available execution
time nor do they provide enough parallel workload to utilize all cores simultaneously. That
offers great potential for future framework modules that use more complex algorithms,
which can improve the overall performance of the robot during the games. Before the

57

58 CHAPTER 7. CONCLUSION AND OUTLOOK

multi-core improvements developed in this thesis, the addition of further modules was
only possible because of the increased single-core performance compared to the NAO
version 5 but was very limited as well.

Nevertheless, the evaluations showed that the work-stealing based scheduling is not
optimal under all circumstances and further improvements may be necessary especially
under high-load scenarios or when considering the execution order of update methods
of the same module. Furthermore, the NAO’s GPU is currently unused and may be
considered for execution in the future as well. Independently, the processing of audio for
speech recognition and sound localization will also become more important in the future.
The SPL rules for the year 2020 state that during a RoboCup competition, the robots
must recognize whether the whistle was blown on their own field and at which position
the referee was standing. Furthermore, the whole league moves towards more human
communication instead of WLAN. Consequently, the speech recognition of commands by
the referee is planned for the future as well [24]. Therefore, the Nao Devils team plans to
add an additional audio cycle. Since the architecture is designed flexible, the number of
cycles can be extended easily. However, then, the number of motion, cognition, and audio
threads needs to be reconsidered to ensure optimal performance.

List of Figures

1.1 Three NAOs version 6 by Nao Devils defending the soccer goal in a game
against Nao-Team HTWK Leipzig during Robocup 2019 in Sydney. 3

2.1 Usefulness of the task’s result after missing the deadline d. 6

3.1 Simplified directed acyclic graph modeling the dependencies between mod-
ules shown in red and representations shown in blue. 12

3.2 Simulator screenshot. 13

5.1 Task graphs generated from the exemplary module-representation graph in
figure 3.1 showing Edep edges in red and Eudp edges in blue. 29

5.2 Simplified class diagram showing the relationship between representations,
modules, and threads. 30

5.3 Communication between the Cognition, Motion, and Debug threads shown
as yellow, red, and blue circles, respectively. Message queues are shown as
arrows and shared memory regions are visualized as gray ellipses. 32

5.4 Execution trace of 3 motion threads (1 super thread and 2 sub threads) and
5 cognition threads (1 super thread and 4 sub threads). 35

6.1 Fluctuations in motion execution time. 39
6.2 Evaluation setup with a NAO walking along the orange dashed line. 41
6.3 Comparison between cognition execution times using recorded log data and

live data on the field. 43
6.4 Average execution times and the 0.01 and 0.99 percentiles of the motion

cycle when using different numbers of threads for motion and cognition. . . 45
6.5 Execution trace of 4 motion threads for a non-preview frame. 46
6.6 Execution trace of 4 motion threads for a preview frame. 46
6.7 Average execution times and the 0.01 and 0.99 percentiles of the cognition

cycle when using different numbers of threads for motion and cognition. . . 47
6.8 Execution trace of 4 cognition threads. 47

59

60 LIST OF FIGURES

6.9 Average execution times and the 0.01 and 0.99 percentiles when ordering
update methods by their increasing or decreasing number of dependents or
by configuration file. 49

6.10 Execution trace of a non-preview motion frame with update methods or-
dered by their increasing number of dependents. 49

6.11 Execution trace of a non-preview motion frame with update methods or-
dered by their decreasing number of dependents. 49

6.12 Average execution times and the 0.01 and 0.99 percentiles of the cognition
cycle when using different numbers of cognition threads compared to the
reference measurements of the non-multi-threaded framework. 51

6.13 Execution trace of a cognition frame with enabled JPEG conversion and
generation of additional ball hypotheses using 4 cognition threads. 51

List of Tables

6.1 Reference measurements of cognition metrics during 10 test passes. 41
6.2 Reference measurements of motion metrics during 10 test passes. 41
6.3 Cognition metrics using log data and their deviations from the reference

measurements using live data. 42
6.4 Cognition metrics before setting fixed real-time priority and their deviations

from the reference measurements. 43
6.5 Average execution times of the non-preview motion and cognition cycle

using either fixed or dynamic thread to CPU core assignments. 53
6.6 Comparison of cognition metrics to reference measurements. 54
6.7 Comparison of motion metrics to reference measurements. 54

61

62 LIST OF TABLES

Listings

3.1 BallPercept representation. 10
3.2 IMUModelProvider module definition. 11
4.1 Intel TBB dependence graph example. 23
4.2 Taskflow code example. 24
5.1 YoloRobotDetector subflow generation. 34

63

64 LISTINGS

Bibliography

[1] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico
Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. “The design of
OpenMP tasks”. In: IEEE Transactions on Parallel and Distributed Systems 20.3
(2008), pp. 404–418.

[2] Robert D Blumofe and Charles E Leiserson. “Scheduling multithreaded computa-
tions by work stealing”. In: Journal of the ACM (JACM) 46.5 (1999), pp. 720–748.

[3] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algo-
rithms and applications. Vol. 24. Springer Science & Business Media, 2011.

[4] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. Parallel programming in OpenMP. Morgan kaufmann, 2001.

[5] The Clang Team. OpenMP support - Clang 9 documentation. 2019. url: https:

//releases.llvm.org/9.0.0/tools/clang/docs/OpenMPSupport.html (visited
on 05/22/2020).

[6] Brian Gerkey. Why ROS 2? url: https://design.ros2.org/articles/why_

ros2.html (visited on 05/22/2020).

[7] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. “Cpp-taskflow:
Fast task-based parallel programming using modern c++”. In: 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2019,
pp. 974–983.

[8] Intel Corporation. Intel Atom Processor E3800 Product Familiy Datasheet. Oct.
2018. url: https : / / www . intel . com / content / dam / www / public / us / en /

documents / datasheets / atom - e3800 - family - datasheet . pdf (visited on
06/22/2019).

[9] Vasudevan Jagannathan. Blackboard architectures and applications. Elsevier, 1989.

[10] Gregor Jochmann, Sören Kerner, Stefan Tasse, and Oliver Urbann. “Efficient multi-
hypotheses unscented kalman filtering for robust localization”. In: Robot Soccer
World Cup. Springer. 2011, pp. 222–233.

65

https://releases.llvm.org/9.0.0/tools/clang/docs/OpenMPSupport.html
https://releases.llvm.org/9.0.0/tools/clang/docs/OpenMPSupport.html
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/why_ros2.html
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-e3800-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-e3800-family-datasheet.pdf

66 BIBLIOGRAPHY

[11] Ralph E Johnson and Brian Foote. “Designing reusable classes”. In: Journal of
object-oriented programming 1.2 (1988), pp. 22–35.

[12] Alexey Kukanov and Michael J Voss. “The Foundations for Scalable Multi-core
Software in Intel Threading Building Blocks”. In: Intel Technology Journal 11.4
(2007).

[13] The Linux Foundation. Real-Time Linux. url: https://wiki.linuxfoundation.

org/realtime/start (visited on 06/19/2019).

[14] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the performance of
ROS2”. In: Proceedings of the 13th International Conference on Embedded Software.
2016, pp. 1–10.

[15] Microsoft Corporation. Enable OpenMP support. 2019. url: https : / / docs .

microsoft.com/en-us/cpp/build/reference/openmp-enable-openmp-2-0-

support?view=vs-2019 (visited on 05/22/2020).

[16] Ingo Molnár. This is the CFS scheduler. url: http://people.redhat.com/mingo/

cfs-scheduler/sched-design-CFS.txt (visited on 07/06/2020).

[17] Nao Devils Team. Code Release 2019. 2019. url: https://github.com/NaoDevils/

CodeRelease/tree/CodeRelease2019 (visited on 03/01/2020).

[18] OpenMP Architecture Review Board. OpenMP Application Program Interface. 2013.
url: https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf (visited
on 05/31/2020).

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. “ROS: an open-source Robot Operating System”.
In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[20] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look
once: Unified, real-time object detection”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 779–788.

[21] James Reinders. Intel threading building blocks: outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly Media, Inc., 2007.

[22] RoboCup Federation. A Brief History of RoboCup. url: https://www.robocup.

org/a_brief_history_of_robocup (visited on 12/19/2019).

[23] RoboCup Federation. Objective. url: https://www.robocup.org/objective (vis-
ited on 12/19/2019).

[24] RoboCup Technical Committee. RoboCup Standard Platform League (NAO) Rule
Book. url: https://collaborating.tuhh.de/HULKs/robocup_tc_public/raw/

master/SPL-Rules_2020.pdf (visited on 07/13/2020).

https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://docs.microsoft.com/en-us/cpp/build/reference/openmp-enable-openmp-2-0-support?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/openmp-enable-openmp-2-0-support?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/openmp-enable-openmp-2-0-support?view=vs-2019
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
https://github.com/NaoDevils/CodeRelease/tree/CodeRelease2019
https://github.com/NaoDevils/CodeRelease/tree/CodeRelease2019
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.robocup.org/a_brief_history_of_robocup
https://www.robocup.org/a_brief_history_of_robocup
https://www.robocup.org/objective
https://collaborating.tuhh.de/HULKs/robocup_tc_public/raw/master/SPL-Rules_2020.pdf
https://collaborating.tuhh.de/HULKs/robocup_tc_public/raw/master/SPL-Rules_2020.pdf

BIBLIOGRAPHY 67

[25] Thomas Röfer, Tim Laue, Andreas Baude, Jan Blumenkamp, Gerrit Felsch, Jan
Fiedler, Arne Hasselbring, Tim Haß, Jan Oppermann, Philip Reichenberg, Nicole
Schrader, and Dennis Weiß. B-Human Team Report and Code Release 2019. url:
https : / / github . com / bhuman / BHumanCodeRelease / raw / coderelease2019 /

CodeRelease2019.pdf (visited on 04/04/2020).

[26] Thomas Röfer, Tim Laue, Jesse Richter-Klug, Maik Schünemann, Jonas Stiensmeier,
Andreas Stolpmann, Alexander Stöwing, and Felix Thielke. B-Human Team Report
and Code Release 2015. url: https://github.com/bhuman/BHumanCodeRelease/

raw/coderelease2015/CodeRelease2015.pdf (visited on 05/26/2020).

[27] Ingmar Schwarz, Oliver Urbann, Aaron Larisch, and Dominik Brämer. Nao Devils
Team Report 2019. 2019. url: https://github.com/NaoDevils/CodeRelease/

blob/CodeRelease2019/TeamReport2019.pdf.

[28] SoftBank Robotics. Technical overview - Aldebaran 2.8.7.0 documentation. url:
http://doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.

html (visited on 02/19/2020).

[29] Oliver Urbann, Simon Camphausen, Arne Moos, Ingmar Schwarz, Sören Kerner, and
Maximilian Otten. “A C Code Generator for Fast Inference and Simple Deployment
of Convolutional Neural Networks on Resource Constrained Systems”. In: arXiv
preprint arXiv:2001.05572 (2020).

[30] Oliver Urbann, Ingmar Schwarz, and Matthias Hofmann. “Flexible linear inverted
pendulum model for cost-effective biped robots”. In: 2015 IEEE-RAS 15th Interna-
tional Conference on Humanoid Robots (Humanoids). IEEE. 2015, pp. 128–131.

https://github.com/bhuman/BHumanCodeRelease/raw/coderelease2019/CodeRelease2019.pdf
https://github.com/bhuman/BHumanCodeRelease/raw/coderelease2019/CodeRelease2019.pdf
https://github.com/bhuman/BHumanCodeRelease/raw/coderelease2015/CodeRelease2015.pdf
https://github.com/bhuman/BHumanCodeRelease/raw/coderelease2015/CodeRelease2015.pdf
https://github.com/NaoDevils/CodeRelease/blob/CodeRelease2019/TeamReport2019.pdf
https://github.com/NaoDevils/CodeRelease/blob/CodeRelease2019/TeamReport2019.pdf
http://doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.html

68 BIBLIOGRAPHY

	Introduction
	About RoboCup
	About the NAO
	Motivation
	Structure

	Prerequisites
	Framework
	Real-time

	Analysis
	Current Situation
	Possible improvements
	Requirements

	Framework and library research
	Approaches for robotics
	B-Human framework
	ROS

	General approaches
	OpenMP
	Intel Threading Building Blocks
	Taskflow

	Consequences for the framework

	Design and implementation
	Task graph generation
	Class design
	Communication
	Debug classes
	Additional features
	Summary

	Evaluation
	Metrics
	Setup
	Reference measurements
	Comparison between log and live data
	Real-time priority

	Scenarios
	Thread count
	Update order
	Stress test
	CPU core pinning
	Reference comparison

	Conclusion and Outlook
	List of Figures
	List of Tables
	Listings
	Bibliography

